Survival of mineral-bound peptides into the Miocene

  1. Beatrice Demarchi  Is a corresponding author
  2. Meaghan Mackie
  3. Zhiheng Li
  4. Tao Deng
  5. Matthew J. Collins
  6. Julia Clarke
  1. University of Turin, Italy
  2. University of Copenhagen, Denmark
  3. Chinese Academy of Sciences, China
  4. University of Cambridge, United Kingdom
  5. The University of Texas at Austin, United States

Abstract

Previously we showed that authentic peptide sequences could be obtained from 3.8-Ma-old ostrich eggshell (OES) from the site of Laetoli, Tanzania (Demarchi et al., 2016). Here we show that the same sequences survive in a > 6.5 Ma OES recovered from a palaeosteppe setting in northwestern China. The eggshell is thicker than those observed in extant species and consistent with the Liushu Struthio sp. ootaxon. These findings push the preservation of ancient proteins back to the Miocene and highlight their potential for paleontology, paleoecology and evolutionary biology.

Data availability

Tandem mass spectra supporting peptide sequence identification are reported in Figure 3 and Figure 3 - Supplement 1 to 10.Raw mass spectrometry data and results of bioinformatics analysis are available via ProteomeXchange with identifier PXD035872.

The following data sets were generated

Article and author information

Author details

  1. Beatrice Demarchi

    Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
    For correspondence
    beatrice.demarchi@unito.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8398-4409
  2. Meaghan Mackie

    Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhiheng Li

    Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Bejing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Tao Deng

    Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Bejing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew J. Collins

    McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Clarke

    Department of Geological Sciences, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministry of University and Research - Italy (Young Researchers - Rita Levi Montalcini)

  • Beatrice Demarchi

Danish National Research Foundation (PROTEIOS (DNRF128))

  • Meaghan Mackie
  • Matthew J. Collins

Alexander von Humboldt Foundation

  • Julia Clarke

Jackson School of Geosciences,University of Texas at Austin

  • Julia Clarke

Chinese National Science Foundation

  • Zhiheng Li
  • Tao Deng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yonatan Sahle, University of Cape Town, South Africa

Version history

  1. Preprint posted: August 19, 2022 (view preprint)
  2. Received: August 24, 2022
  3. Accepted: December 16, 2022
  4. Accepted Manuscript published: December 19, 2022 (version 1)
  5. Version of Record published: December 30, 2022 (version 2)

Copyright

© 2022, Demarchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 828
    views
  • 133
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Beatrice Demarchi
  2. Meaghan Mackie
  3. Zhiheng Li
  4. Tao Deng
  5. Matthew J. Collins
  6. Julia Clarke
(2022)
Survival of mineral-bound peptides into the Miocene
eLife 11:e82849.
https://doi.org/10.7554/eLife.82849

Share this article

https://doi.org/10.7554/eLife.82849

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Roberto Efraín Díaz, Andrew K Ecker ... James S Fraser
    Research Article

    Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.