Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction

  1. Jacob M Winter
  2. Heidi L Fresenius
  3. Corey N Cunningham
  4. Peng Wei
  5. Heather R Keys
  6. Jordan A Berg
  7. Alex J Bott
  8. Tarun Yadav
  9. Jeremy A Ryan
  10. Deepika Sirohi
  11. Sheryl R Tripp
  12. Paige Barta
  13. Neeraj Agarwal
  14. Anthony Letai
  15. David M Sabatini
  16. Matthew L Wohlever
  17. Jared Rutter  Is a corresponding author
  1. University of Utah, United States
  2. University of Toledo, United States
  3. Whitehead Institute for Biomedical Research, United States
  4. Dana-Farber Cancer Institute, United States
  5. Massachusetts Institute of Technology, United States

Abstract

The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.

Data availability

All data and source data generated or analyzed are included as supplementary files. CRISPR screening data and human mCRPC survival data are provided as supplementary files.

Article and author information

Author details

  1. Jacob M Winter

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    Jacob M Winter, has filed a patent related to this work. Reference: WO2021/257910.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7152-183X
  2. Heidi L Fresenius

    Department of Chemistry and Biochemistry, University of Toledo, Toledo, United States
    Competing interests
    No competing interests declared.
  3. Corey N Cunningham

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Peng Wei

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Heather R Keys

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1371-2288
  6. Jordan A Berg

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Alex J Bott

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2273-8922
  8. Tarun Yadav

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Jeremy A Ryan

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3327-1283
  10. Deepika Sirohi

    ARUP Laboratories, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  11. Sheryl R Tripp

    ARUP Laboratories, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Paige Barta

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  13. Neeraj Agarwal

    Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  14. Anthony Letai

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  15. David M Sabatini

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  16. Matthew L Wohlever

    Department of Chemistry and Biochemistry, University of Toledo, Toledo, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9406-3410
  17. Jared Rutter

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    For correspondence
    rutter@biochem.utah.edu
    Competing interests
    Jared Rutter, has filed a provisional patent related to this work, reference: WO2021/257910 which focuses on using ATAD1 status as a biomarker for proteasome inhibitor therapy in cancer..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2710-9765

Funding

National Institutes of Health (1F30CA243440)

  • Jacob M Winter

Howard Hughes Medical Institute

  • Jared Rutter

National Institutes of Health (1T32DK11096601)

  • Jordan A Berg

National Institutes of Health (1F99CA253744)

  • Jordan A Berg

National Institutes of Health (5T32DK091317)

  • Corey N Cunningham

National Institutes of Health (1F32GM140525)

  • Corey N Cunningham

National Institutes of Health (K00CA212445)

  • Alex J Bott

National Institutes of Health (R35GM137904)

  • Matthew L Wohlever

National Institutes of Health (CA228346)

  • Jared Rutter

National Institutes of Health (R35GM131854)

  • Jared Rutter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC protocol # 18-11004) protocols of the University of Utah. Every effort was made to minimize suffering.

Copyright

© 2022, Winter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,993
    views
  • 370
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacob M Winter
  2. Heidi L Fresenius
  3. Corey N Cunningham
  4. Peng Wei
  5. Heather R Keys
  6. Jordan A Berg
  7. Alex J Bott
  8. Tarun Yadav
  9. Jeremy A Ryan
  10. Deepika Sirohi
  11. Sheryl R Tripp
  12. Paige Barta
  13. Neeraj Agarwal
  14. Anthony Letai
  15. David M Sabatini
  16. Matthew L Wohlever
  17. Jared Rutter
(2022)
Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction
eLife 11:e82860.
https://doi.org/10.7554/eLife.82860

Share this article

https://doi.org/10.7554/eLife.82860

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.