Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1

  1. Rui Zhang
  2. Qingxi Liu
  3. Sa Zhou
  4. Hongpeng He
  5. Mingfeng Zhao  Is a corresponding author
  6. Wenjian Ma  Is a corresponding author
  1. Nankai University, China
  2. Tianjin University of Science and Technology, China

Abstract

Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on CAR-T immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death-ligand 1 (PD-L1) which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial ROS release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the STC1 gene, which encodes the glycoprotein hormone staniocalcin-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo and STC1 played a critical role. These data revealed a novel function of MSC and staniocalcin-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.

Data availability

All data generated or analysed during this study are included in the manuscript. Source Data files have been provided for Figures 1, 2, 3 and 4.

Article and author information

Author details

  1. Rui Zhang

    Department of Hematology, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qingxi Liu

    State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sa Zhou

    College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hongpeng He

    College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mingfeng Zhao

    Department of Hematology, Nankai University, Tianjin, China
    For correspondence
    mingfengzhao@sina.com
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenjian Ma

    College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    For correspondence
    ma_wj@tust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3392-1549

Funding

National Key Research and Development Program of China (2018YFA0901702)

  • Wenjian Ma

Shandong Key Research and Development Program (2019GSF107088)

  • Qingxi Liu

National Science foundation of Shandong (ZR202111220001)

  • Wenjian Ma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ping-Chih Ho, Ludwig Institute for Cancer Research, Switzerland

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments and procedures were approved by the Ethics Committee of Tianjin First Central Hospital (approval#2021-SYDWLL-000301).

Human subjects: Ethical approval and informed consent were obtained. Patients with lymphoma and Healthy donors agreed to participate in this experiment within a clinical trial at the Department of Hematology at Tianjin First Central Hospital (Tianjin, China) with autologous CAR-T 19 cells (ChiCTR-ONN-16009862; Tianjin First Central Hospital Medical Ethics Committee) in accordance with the World Medical Association medical research guidelines. Peripheral blood samples were obtained from healthy male donors (n = 3) in Tianjin First Central Hospital.

Version history

  1. Received: August 24, 2022
  2. Preprint posted: September 22, 2022 (view preprint)
  3. Accepted: February 12, 2023
  4. Accepted Manuscript published: February 13, 2023 (version 1)
  5. Accepted Manuscript updated: March 6, 2023 (version 2)
  6. Version of Record published: March 16, 2023 (version 3)
  7. Version of Record updated: March 21, 2023 (version 4)

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,348
    views
  • 227
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Zhang
  2. Qingxi Liu
  3. Sa Zhou
  4. Hongpeng He
  5. Mingfeng Zhao
  6. Wenjian Ma
(2023)
Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1
eLife 12:e82934.
https://doi.org/10.7554/eLife.82934

Share this article

https://doi.org/10.7554/eLife.82934

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Brandon H Hayes, Mai Wang ... Dennis E Discher
    Research Article

    Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal ‘M1-like’ phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.

    1. Cancer Biology
    Keene L Abbott, Ahmed Ali ... Matthew G Vander Heiden
    Short Report

    The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.