Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1
Abstract
Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on CAR-T immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death-ligand 1 (PD-L1) which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial ROS release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the STC1 gene, which encodes the glycoprotein hormone staniocalcin-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo and STC1 played a critical role. These data revealed a novel function of MSC and staniocalcin-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.
Data availability
All data generated or analysed during this study are included in the manuscript. Source Data files have been provided for Figures 1, 2, 3 and 4.
Article and author information
Author details
Funding
National Key Research and Development Program of China (2018YFA0901702)
- Wenjian Ma
Shandong Key Research and Development Program (2019GSF107088)
- Qingxi Liu
National Science foundation of Shandong (ZR202111220001)
- Wenjian Ma
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments and procedures were approved by the Ethics Committee of Tianjin First Central Hospital (approval#2021-SYDWLL-000301).
Human subjects: Ethical approval and informed consent were obtained. Patients with lymphoma and Healthy donors agreed to participate in this experiment within a clinical trial at the Department of Hematology at Tianjin First Central Hospital (Tianjin, China) with autologous CAR-T 19 cells (ChiCTR-ONN-16009862; Tianjin First Central Hospital Medical Ethics Committee) in accordance with the World Medical Association medical research guidelines. Peripheral blood samples were obtained from healthy male donors (n = 3) in Tianjin First Central Hospital.
Copyright
© 2023, Zhang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,592
- views
-
- 276
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 16
- citations for umbrella DOI https://doi.org/10.7554/eLife.82934