Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1

  1. Rui Zhang
  2. Qingxi Liu
  3. Sa Zhou
  4. Hongpeng He
  5. Mingfeng Zhao  Is a corresponding author
  6. Wenjian Ma  Is a corresponding author
  1. Nankai University, China
  2. Tianjin University of Science and Technology, China

Abstract

Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on CAR-T immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death-ligand 1 (PD-L1) which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial ROS release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the STC1 gene, which encodes the glycoprotein hormone staniocalcin-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo and STC1 played a critical role. These data revealed a novel function of MSC and staniocalcin-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.

Data availability

All data generated or analysed during this study are included in the manuscript. Source Data files have been provided for Figures 1, 2, 3 and 4.

Article and author information

Author details

  1. Rui Zhang

    Department of Hematology, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qingxi Liu

    State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sa Zhou

    College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hongpeng He

    College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mingfeng Zhao

    Department of Hematology, Nankai University, Tianjin, China
    For correspondence
    mingfengzhao@sina.com
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenjian Ma

    College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
    For correspondence
    ma_wj@tust.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3392-1549

Funding

National Key Research and Development Program of China (2018YFA0901702)

  • Wenjian Ma

Shandong Key Research and Development Program (2019GSF107088)

  • Qingxi Liu

National Science foundation of Shandong (ZR202111220001)

  • Wenjian Ma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ping-Chih Ho, Ludwig Institute for Cancer Research, Switzerland

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments and procedures were approved by the Ethics Committee of Tianjin First Central Hospital (approval#2021-SYDWLL-000301).

Human subjects: Ethical approval and informed consent were obtained. Patients with lymphoma and Healthy donors agreed to participate in this experiment within a clinical trial at the Department of Hematology at Tianjin First Central Hospital (Tianjin, China) with autologous CAR-T 19 cells (ChiCTR-ONN-16009862; Tianjin First Central Hospital Medical Ethics Committee) in accordance with the World Medical Association medical research guidelines. Peripheral blood samples were obtained from healthy male donors (n = 3) in Tianjin First Central Hospital.

Version history

  1. Received: August 24, 2022
  2. Preprint posted: September 22, 2022 (view preprint)
  3. Accepted: February 12, 2023
  4. Accepted Manuscript published: February 13, 2023 (version 1)
  5. Accepted Manuscript updated: March 6, 2023 (version 2)
  6. Version of Record published: March 16, 2023 (version 3)
  7. Version of Record updated: March 21, 2023 (version 4)

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,304
    views
  • 220
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Zhang
  2. Qingxi Liu
  3. Sa Zhou
  4. Hongpeng He
  5. Mingfeng Zhao
  6. Wenjian Ma
(2023)
Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1
eLife 12:e82934.
https://doi.org/10.7554/eLife.82934

Share this article

https://doi.org/10.7554/eLife.82934

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.