MHC class I and MHC class II reporter mice enable analysis of immune oligodendroglia in mouse models of multiple sclerosis

  1. Em P Harrington  Is a corresponding author
  2. Riley B Catenacci
  3. Matthew D Smith
  4. Dongeun Heo
  5. Cecilia E Miller
  6. Keya R Meyers
  7. Jenna Glatzer
  8. Dwight E Bergles
  9. Peter A Calabresi
  1. The Ohio State University Wexner Medical Center, United States
  2. Johns Hopkins University, United States

Abstract

Oligodendrocytes and their progenitors upregulate MHC pathways in response to inflammation, but the frequency of this phenotypic change is unknown and the features of these immune oligodendroglia are poorly defined. We generated MHC class I and II transgenic reporter mice to define their dynamics in response to inflammatory demyelination, providing a means to monitor MHC activation in diverse cell types in living mice and define their roles in aging, injury and disease.

Data availability

Sequencing data has been deposited in GEO under the accession code GSE213739Code used to analyze sequencing data was uploaded at Source Code File 1All data generated or analyzed during this study are included in manuscript source data files

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Em P Harrington

    Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, United States
    For correspondence
    emily.harrington@osumc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6352-8687
  2. Riley B Catenacci

    Department of Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew D Smith

    Department of Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dongeun Heo

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cecilia E Miller

    Department of Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0008-4455-436X
  6. Keya R Meyers

    Department of Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jenna Glatzer

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6809-9401
  8. Dwight E Bergles

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-7378
  9. Peter A Calabresi

    Department of Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NIA AG072305)

  • Dwight E Bergles

National Multiple Sclerosis Society (FAN-1707-28857)

  • Em P Harrington

Dr. Miriam and Sheldon G Adelson Medical Research Foundation

  • Dwight E Bergles

National Science Foundation

  • Riley B Catenacci

National Institutes of Health (R01 NS041435)

  • Peter A Calabresi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tatyana Chtanova, Garvan Institute of Medical Research, Australia

Ethics

Animal experimentation: All animal procedures were performed according to protocols approved by the Johns Hopkins Animal Care and Use Committee protocol #MO22M158.

Version history

  1. Received: August 24, 2022
  2. Preprint posted: September 28, 2022 (view preprint)
  3. Accepted: April 13, 2023
  4. Accepted Manuscript published: April 14, 2023 (version 1)
  5. Version of Record published: May 12, 2023 (version 2)

Copyright

© 2023, Harrington et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,880
    views
  • 336
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Em P Harrington
  2. Riley B Catenacci
  3. Matthew D Smith
  4. Dongeun Heo
  5. Cecilia E Miller
  6. Keya R Meyers
  7. Jenna Glatzer
  8. Dwight E Bergles
  9. Peter A Calabresi
(2023)
MHC class I and MHC class II reporter mice enable analysis of immune oligodendroglia in mouse models of multiple sclerosis
eLife 12:e82938.
https://doi.org/10.7554/eLife.82938

Share this article

https://doi.org/10.7554/eLife.82938

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.