Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries

Abstract

Spinal locomotor circuitry is comprised of rhythm generating centers, one for each limb, that are interconnected by local and long-distance propriospinal neurons thought to carry temporal information necessary for interlimb coordination and gait control. We showed previously that conditional silencing of the long ascending propriospinal neurons (LAPNs) that project from the lumbar to the cervical rhythmogenic centers (L1/L2 to C6), disrupts right-left alternation of both the forelimbs and hindlimbs without significantly disrupting other fundamental aspects of interlimb and speed-dependent coordination (Pocratsky et al., 2020). Subsequently, we showed that silencing the LAPNs after a moderate thoracic contusive spinal cord injury (SCI) resulted in better recovered locomotor function (Shepard et al., 2021). In this research advance, we focus on the descending equivalent to the LAPNs, the long descending propriospinal neurons (LDPNs) that have cell bodies at C6 and terminals at L2. We found that conditional silencing of the LDPNs in the intact adult rat resulted in disrupted alternation of each limb pair (forelimbs and hindlimbs) and after a thoracic contusion SCI significantly improved locomotor function. These observations lead us to speculate that the LAPNs and LDPNs have similar roles in the exchange of temporal information between the cervical and lumbar rhythm generating centers, but that the partial disruption of the pathway after SCI limits the independent function of the lumbar circuitry. Silencing the LAPNs or LDPNs effectively permits or frees-up the lumbar circuitry to function independently.

Data availability

All source data for the main figures have been provided.

Article and author information

Author details

  1. Courtney T Shepard

    Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brandon L Brown

    Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Morgan A Van Rijswijck

    Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachel M Zalla

    Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Darlene A Burke

    Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Johnny R Morehouse

    Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Amberly S Riegler

    Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott R Whittemore

    Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6437-7200
  9. David SK Magnuson

    Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, United States
    For correspondence
    dsmagn01@louisville.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3816-3676

Funding

National Institute of Neurological Disorders and Stroke (R01 NS112304-01)

  • Scott R Whittemore
  • David SK Magnuson

National Institute of Neurological Disorders and Stroke (R01 NS089324)

  • Scott R Whittemore
  • David SK Magnuson

National Institute of Neurological Disorders and Stroke (F31 NS116935)

  • Brandon L Brown

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#19644) of the University of Louisville. All surgery was performed under ketamine/xylazine anesthesia supplemented with isoflurane, and every effort was made to minimize suffering.

Copyright

© 2023, Shepard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 390
    views
  • 88
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Courtney T Shepard
  2. Brandon L Brown
  3. Morgan A Van Rijswijck
  4. Rachel M Zalla
  5. Darlene A Burke
  6. Johnny R Morehouse
  7. Amberly S Riegler
  8. Scott R Whittemore
  9. David SK Magnuson
(2023)
Silencing long-descending inter-enlargement propriospinal neurons improves hindlimb stepping after contusive spinal cord injuries
eLife 12:e82944.
https://doi.org/10.7554/eLife.82944

Share this article

https://doi.org/10.7554/eLife.82944

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Ji Eun Ryu, Kyu-Won Shim ... Eun Young Kim
    Research Article

    The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.