Embryo-derive TNF promotes decidualization via fibroblast activation

  1. Si-Ting Chen
  2. Wen-Wen Shi
  3. Yu-Qian Lin
  4. Zhen-Shan Yang
  5. Ying Wang
  6. Meng-Yuan Li
  7. Yue Li
  8. Ai-Xia Liu
  9. Yali Hu  Is a corresponding author
  10. Zeng-Ming Yang  Is a corresponding author
  1. Guizhou University, China
  2. South China Agricultural University, China
  3. Zhejiang University, China
  4. Nanjing University, China

Abstract

Decidualization is a process in which endometrial stromal fibroblasts differentiate into specialized secretory decidual cells and essential for the successful establishment of pregnancy. The underlying mechanism during decidualization still remains poorly defined. Because decidualization and fibroblast activation share similar characteristics, this study was to examine whether fibroblast activation is involved in decidualization. In our study, fibroblast activation-related markers are obviously detected in pregnant decidua and under in vitro decidualization. ACTIVIN A secreted under fibroblast activation promotes in vitro decidualization. We showed that arachidonic acid released from uterine luminal epithelium can induce fibroblast activation and decidualization through PGI2 and its nuclear receptor PPARδ. Based on the significant difference of fibroblast activation-related markers between pregnant and pseudopregnant mice, we found that embryo-derived TNF promotes CPLA phosphorylation and arachidonic acid release from luminal epithelium. Fibroblast activation is also detected under human in vitro decidualization. Similar arachidonic acid-PGI2-PPARd-ACTIVIN A pathway is conserved in human endometrium. Collectively, our data indicate that embryo-derived TNF promotes CPLA phosphorylation and arachidonic acid release from luminal epithelium to induce fibroblast activation and decidualization.

Data availability

All data generated or analysed during this study are included in the manuscript. Source data files are provided for Figures 1-7.

Article and author information

Author details

  1. Si-Ting Chen

    College of Animal Science, Guizhou University, Guiyang, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wen-Wen Shi

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu-Qian Lin

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhen-Shan Yang

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ying Wang

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Meng-Yuan Li

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yue Li

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ai-Xia Liu

    Department of Reproductive Endocrinology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yali Hu

    Department of Obstetrics and Gynecology, Nanjing University, Nanjing, China
    For correspondence
    glyyhuyali@163.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Zeng-Ming Yang

    College of Animal Science, Guizhou University, Guiyang, China
    For correspondence
    yangzm@gzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6775-0082

Funding

National Natural Science Foundation of China (32171114 and 31871511)

  • Zeng-Ming Yang

National Key Research and Development Program of China (2018YFC1004400)

  • Zeng-Ming Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daria Lizneva, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: All animal protocols were approved by the Animal Care and Use Committee of South China Agricultural University (No. 2021f085).

Version history

  1. Received: August 24, 2022
  2. Preprint posted: September 22, 2022 (view preprint)
  3. Accepted: July 15, 2023
  4. Accepted Manuscript published: July 17, 2023 (version 1)
  5. Version of Record published: July 27, 2023 (version 2)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 584
    views
  • 118
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Si-Ting Chen
  2. Wen-Wen Shi
  3. Yu-Qian Lin
  4. Zhen-Shan Yang
  5. Ying Wang
  6. Meng-Yuan Li
  7. Yue Li
  8. Ai-Xia Liu
  9. Yali Hu
  10. Zeng-Ming Yang
(2023)
Embryo-derive TNF promotes decidualization via fibroblast activation
eLife 12:e82970.
https://doi.org/10.7554/eLife.82970

Share this article

https://doi.org/10.7554/eLife.82970

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.