Embryo-derive TNF promotes decidualization via fibroblast activation

  1. Si-Ting Chen
  2. Wen-Wen Shi
  3. Yu-Qian Lin
  4. Zhen-Shan Yang
  5. Ying Wang
  6. Meng-Yuan Li
  7. Yue Li
  8. Ai-Xia Liu
  9. Yali Hu  Is a corresponding author
  10. Zeng-Ming Yang  Is a corresponding author
  1. Guizhou University, China
  2. South China Agricultural University, China
  3. Zhejiang University, China
  4. Nanjing University, China

Abstract

Decidualization is a process in which endometrial stromal fibroblasts differentiate into specialized secretory decidual cells and essential for the successful establishment of pregnancy. The underlying mechanism during decidualization still remains poorly defined. Because decidualization and fibroblast activation share similar characteristics, this study was to examine whether fibroblast activation is involved in decidualization. In our study, fibroblast activation-related markers are obviously detected in pregnant decidua and under in vitro decidualization. ACTIVIN A secreted under fibroblast activation promotes in vitro decidualization. We showed that arachidonic acid released from uterine luminal epithelium can induce fibroblast activation and decidualization through PGI2 and its nuclear receptor PPARδ. Based on the significant difference of fibroblast activation-related markers between pregnant and pseudopregnant mice, we found that embryo-derived TNF promotes CPLA phosphorylation and arachidonic acid release from luminal epithelium. Fibroblast activation is also detected under human in vitro decidualization. Similar arachidonic acid-PGI2-PPARd-ACTIVIN A pathway is conserved in human endometrium. Collectively, our data indicate that embryo-derived TNF promotes CPLA phosphorylation and arachidonic acid release from luminal epithelium to induce fibroblast activation and decidualization.

Data availability

All data generated or analysed during this study are included in the manuscript. Source data files are provided for Figures 1-7.

Article and author information

Author details

  1. Si-Ting Chen

    College of Animal Science, Guizhou University, Guiyang, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wen-Wen Shi

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu-Qian Lin

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhen-Shan Yang

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ying Wang

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Meng-Yuan Li

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yue Li

    College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ai-Xia Liu

    Department of Reproductive Endocrinology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yali Hu

    Department of Obstetrics and Gynecology, Nanjing University, Nanjing, China
    For correspondence
    glyyhuyali@163.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Zeng-Ming Yang

    College of Animal Science, Guizhou University, Guiyang, China
    For correspondence
    yangzm@gzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6775-0082

Funding

National Natural Science Foundation of China (32171114 and 31871511)

  • Zeng-Ming Yang

National Key Research and Development Program of China (2018YFC1004400)

  • Zeng-Ming Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols were approved by the Animal Care and Use Committee of South China Agricultural University (No. 2021f085).

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 699
    views
  • 138
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Si-Ting Chen
  2. Wen-Wen Shi
  3. Yu-Qian Lin
  4. Zhen-Shan Yang
  5. Ying Wang
  6. Meng-Yuan Li
  7. Yue Li
  8. Ai-Xia Liu
  9. Yali Hu
  10. Zeng-Ming Yang
(2023)
Embryo-derive TNF promotes decidualization via fibroblast activation
eLife 12:e82970.
https://doi.org/10.7554/eLife.82970

Share this article

https://doi.org/10.7554/eLife.82970

Further reading

    1. Developmental Biology
    Nathaniel C Nelson, Matthias C Kugler
    Insight

    Cells called alveolar myofibroblasts, which have a central role in the development of the lung after birth, receive an orchestrated input from a range of different signaling pathways.

    1. Developmental Biology
    Imran S Khan, Christopher Molina ... Dean Sheppard
    Research Article

    Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.