Abstract

The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal gland to adrenocorticotropic hormone (ACTH), although the underlying mechanisms are poorly understood. Here, we show by transcriptomic, proteomic and metabolomic analyses that LPS-induced systemic inflammation triggers profound metabolic changes in steroidogenic adrenocortical cells, including downregulation of the TCA cycle and oxidative phosphorylation, in mice. Inflammation disrupts the TCA cycle at the level of succinate dehydrogenase (SDH), leading to succinate accumulation and disturbed steroidogenesis. Mechanistically, IL-1β reduces SDHB expression through upregulation of DNA methyltransferase 1 (DNMT1) and methylation of the SDHB promoter. Consequently, increased succinate levels impair oxidative phosphorylation and ATP synthesis and enhance ROS production, leading to reduced steroidogenesis. Together, we demonstrate that the IL-1β-DNMT1-SDHB-succinate axis disrupts steroidogenesis. Our findings not only provide a mechanistic explanation for the adrenal dysfunction in severe inflammation, but also offer a potential target for therapeutic intervention.

Data availability

RNA-Seq data are available in: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200220.The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier PXD036542. Once the article is accepted, data will be made public and accessible.

The following data sets were generated

Article and author information

Author details

  1. Ivona Mateska

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    For correspondence
    Ivona.Mateska@uniklinikum-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6150-9175
  2. Anke Witt

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Eman Hagag

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anupam Sinha

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Canelif Yilmaz

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9676-9310
  6. Evangelia Thanou

    Department of Molecular and Cellular Neurobiology, Vrije Universiteit, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6843-4591
  7. Na Sun

    Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ourania Kolliniati

    Department of Clinical Chemistry, University of Crete, Heraklion, Greece
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Patschin

    Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Heba Abdelmegeed

    Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Holger Henneicke

    enter for Regenerative Therapies, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Waldemar Kanczkowski

    Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Ben Wielockx

    Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Christos Tsatsanis

    Department of Clinical Chemistry, University of Crete, Heraklion, Greece
    Competing interests
    The authors declare that no competing interests exist.
  15. Andreas Dahl

    Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2668-8371
  16. Axel Karl Walch

    Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Ka Wan Li

    Center of Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6983-5055
  18. Mirko Peitzsch

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2472-675X
  19. Triantafyllos Chavakis

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  20. Vasileia Ismini Alexaki

    Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
    For correspondence
    VasileiaIsmini.Alexaki@uniklinikum-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3935-8985

Funding

Deutsche Forschungsgemeinschaft (SFB/TRR205)

  • Ben Wielockx
  • Mirko Peitzsch
  • Vasileia Ismini Alexaki

HORIZON EUROPE Framework Programme (Marie Skłodowska-Curie grant agreement No 765704)

  • Vasileia Ismini Alexaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments were approved by the Landesdirektion Sachsen Germany (protocol number TVV57/2018).

Copyright

© 2023, Mateska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,190
    views
  • 226
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.83064

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.