Effects of smoking on genome-wide DNA methylation profiles: A study of discordant and concordant monozygotic twin pairs

  1. Jenny van Dongen  Is a corresponding author
  2. Gonneke Willemsen
  3. BIOS Consortium
  4. Eco JC de Geus
  5. Dorret I Boomsma
  6. Michael C Neale
  1. VU Amsterdam, Netherlands
  2. Virginia Commonwealth University, United States

Abstract

Background: Smoking-associated DNA methylation levels identified through epigenome-wide association studies (EWAS) are generally ascribed to smoking-reactive mechanisms, but the contribution of a shared genetic predisposition to smoking and DNA methylation levels is typically not accounted for.

Methods: We exploited a strong within-family design, i.e., the discordant monozygotic twin design, to study reactiveness of DNA methylation in blood cells to smoking and reversibility of methylation patterns upon quitting smoking. Illumina HumanMethylation450 BeadChip data were available for 769 monozygotic twin pairs (mean age=36 years,range=18-78, 70% female), including pairs discordant or concordant for current or former smoking.

Results: In pairs discordant for current smoking, 13 differentially methylated CpGs were found between current smoking twins and their genetically identical co-twin who never smoked. Top sites include multiple CpGs in CACNA1D and GNG12, which encode subunits of a calcium voltage-gated channel and G protein, respectively. These proteins interact with the nicotinic acetylcholine receptor, suggesting that methylation levels at these CpGs might be reactive to nicotine exposure. All 13 CpGs have been previously associated with smoking in unrelated individuals and data from monozygotic pairs discordant for former smoking indicated that methylation patterns are to a large extent reversible upon smoking cessation. We further showed that differences in smoking level exposure for monozygotic twins who are both current smokers but differ in the number of cigarettes they smoke are reflected in their DNA methylation profiles.

Conclusions: In conclusion, by analysing data from monozygotic twins, we robustly demonstrate that DNA methylation level in human blood cells is reactive to cigarette smoking.

Funding: We acknowledge funding from the National Institute on Drug Abuse grant DA049867, the Netherlands Organization for Scientific Research (NWO): Biobanking and Biomolecular Research Infrastructure (BBMRI–NL, NWO 184.033.111) and the BBRMI-NL-financed BIOS Consortium (NWO 184.021.007), NWO Large Scale infrastructures X-Omics (184.034.019), Genotype/phenotype database for behavior genetic and genetic epidemiological studies (ZonMw Middelgroot 911-09-032); Netherlands Twin Registry Repository: researching the interplay between genome and environment (NWO-Groot 480-15-001/674); the Avera Institute, Sioux Falls (USA) and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995); epigenetic data were generated at the Human Genomics Facility (HuGe-F) at ErasmusMC Rotterdam. Cotinine assaying was sponsored by the Neuroscience Campus Amsterdam. DIB acknowledges the Royal Netherlands Academy of Science Professor Award (PAH/6635).

Data availability

The HumanMethylation450 BeadChip data from the NTR are available as part of the Biobank-based Integrative Omics Studies (BIOS) Consortium in the European Genome phenome Archive (EGA), under the accession code EGAD00010000887. They are also available upon request via the BBMRI-NL BIOS consortium (https://www.bbmri.nl/acquisition-use-analyze/bios). All NTR data can be requested by bona fida researchers (https://ntr-data-request.psy.vu.nl/). Because of the consent given by study participants the data cannot be made publicly available.The pipeline for DNA methylation-array analysis developed by the Biobank-based Integrative Omics Study (BIOS) consortium is available here: https://molepi.github.io/DNAmArray_workflow/ (https://doi.org/10.5281/zenodo.3355292). The code for the EWAS analysis in monozygotic twin pairs is included in additional file 9

Article and author information

Author details

  1. Jenny van Dongen

    Department of Biological Psychology, VU Amsterdam, Amsterdam, Netherlands
    For correspondence
    j.van.dongen@vu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2063-8741
  2. Gonneke Willemsen

    Department of Biological Psychology, VU Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. BIOS Consortium

  4. Eco JC de Geus

    Department of Biological Psychology, VU Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Dorret I Boomsma

    Department of Biological Psychology, VU Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael C Neale

    Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Drug Abuse (DA049867)

  • Michael C Neale

ZonMw (NWO-Groot 480-15-001/674)

  • Gonneke Willemsen
  • Eco JC de Geus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melinda Aldrich, Vanderbilt University Medical Center, United States

Ethics

Human subjects: Informed consent was obtained from all participants. The study was approved by the Central Ethics Committee on Research Involving Human Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board certified by the U.S. Office of Human Research Protections (IRB number IRB00002991 under Federal-wide Assurance- FWA00017598; IRB/institute codes, NTR 03-180).

Version history

  1. Preprint posted: August 19, 2022 (view preprint)
  2. Received: September 6, 2022
  3. Accepted: August 8, 2023
  4. Accepted Manuscript published: August 10, 2023 (version 1)
  5. Version of Record published: September 14, 2023 (version 2)

Copyright

© 2023, van Dongen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,367
    views
  • 201
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenny van Dongen
  2. Gonneke Willemsen
  3. BIOS Consortium
  4. Eco JC de Geus
  5. Dorret I Boomsma
  6. Michael C Neale
(2023)
Effects of smoking on genome-wide DNA methylation profiles: A study of discordant and concordant monozygotic twin pairs
eLife 12:e83286.
https://doi.org/10.7554/eLife.83286

Share this article

https://doi.org/10.7554/eLife.83286

Further reading

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.