The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin dependent lateral organ initiation

  1. Elmehdi Bahafid
  2. Imke Bradtmöller
  3. Ann M Thies
  4. Thi TON Nguyen
  5. Crisanto Gutierrez
  6. Bénédicte Desvoyes
  7. Yvonne Stahl
  8. Ikram Blilou
  9. Rüdiger GW Simon  Is a corresponding author
  1. Heinrich Heine University Düsseldorf, Germany
  2. Centro de Biologia Molecular Severo Ochoa, Spain
  3. King Abdullah University of Science and Technology, Saudi Arabia

Abstract

Plants produce new organs post-embryonically throughout their entire life cycle. This is due to stem cells present in the shoot and root apical meristems, the SAM and RAM, respectively. In the SAM, stem cells are located in the central zone where they divide slowly. Stem cell daughters are displaced laterally and enter the peripheral zone, where their mitotic activity increases and lateral organ primordia are formed. How the spatial arrangement of these different domains is initiated and controlled during SAM growth and development, and how sites of lateral organ primordia are determined in the peripheral zone is not yet completely understood. We found that the SHORTROOT (SHR) transcription factor together with its target transcription factors SCARECROW (SCR), SCARECROW-LIKE23 (SCL23) and JACKDAW (JKD), promotes formation of lateral organs and controls shoot meristem size. SHR, SCR, SCL23 and JKD are expressed in distinct, but partially overlapping patterns in the SAM. They can physically interact and activate expression of key cell cycle regulators such as CYCLIND6;1 (CYCD6;1) to promote the formation of new cell layers. In the peripheral zone, auxin accumulates at sites of lateral organ primordia initiation and activates SHR expression via the auxin response factor MONOPTEROS (MP) and auxin response elements in the SHR promoter. In the central zone, the SHR-target SCL23 physically interacts with the key stem cell regulator WUSCHEL (WUS) to promote stem cell fate. Both SCL23 and WUS expression are subject to negative feedback regulation from stem cells through the CLAVATA signaling pathway. Together, our findings illustrate how SHR-dependent transcription factor complexes act in different domains of the shoot meristem to mediate cell division and auxin dependent organ initiation in the peripheral zone, and coordinate this activity with stem cell maintenance in the central zone of the SAM.

Data availability

Original microscopy and image analysis data referenced in the manuscriptare accessible through BioStudies at the following link:https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD903

Article and author information

Author details

  1. Elmehdi Bahafid

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Imke Bradtmöller

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann M Thies

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thi TON Nguyen

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Crisanto Gutierrez

    Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8905-8222
  6. Bénédicte Desvoyes

    Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Yvonne Stahl

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ikram Blilou

    Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  9. Rüdiger GW Simon

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    For correspondence
    ruediger.simon@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1317-7716

Funding

Deutsche Forschungsgemeinschaft (CSCS)

  • Rüdiger GW Simon

Deutsche Forschungsgemeinschaft (EXC2048)

  • Elmehdi Bahafid
  • Imke Bradtmöller
  • Ann M Thies
  • Thi TON Nguyen
  • Yvonne Stahl
  • Rüdiger GW Simon

Deutsche Forschungsgemeinschaft (CRC1208)

  • Rüdiger GW Simon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Bahafid et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,377
    views
  • 462
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elmehdi Bahafid
  2. Imke Bradtmöller
  3. Ann M Thies
  4. Thi TON Nguyen
  5. Crisanto Gutierrez
  6. Bénédicte Desvoyes
  7. Yvonne Stahl
  8. Ikram Blilou
  9. Rüdiger GW Simon
(2023)
The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin dependent lateral organ initiation
eLife 12:e83334.
https://doi.org/10.7554/eLife.83334

Share this article

https://doi.org/10.7554/eLife.83334

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.