The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin dependent lateral organ initiation

  1. Elmehdi Bahafid
  2. Imke Bradtmöller
  3. Ann M Thies
  4. Thi TON Nguyen
  5. Crisanto Gutierrez
  6. Bénédicte Desvoyes
  7. Yvonne Stahl
  8. Ikram Blilou
  9. Rüdiger GW Simon  Is a corresponding author
  1. Heinrich Heine University Düsseldorf, Germany
  2. Centro de Biologia Molecular Severo Ochoa, Spain
  3. King Abdullah University of Science and Technology, Saudi Arabia

Abstract

Plants produce new organs post-embryonically throughout their entire life cycle. This is due to stem cells present in the shoot and root apical meristems, the SAM and RAM, respectively. In the SAM, stem cells are located in the central zone where they divide slowly. Stem cell daughters are displaced laterally and enter the peripheral zone, where their mitotic activity increases and lateral organ primordia are formed. How the spatial arrangement of these different domains is initiated and controlled during SAM growth and development, and how sites of lateral organ primordia are determined in the peripheral zone is not yet completely understood. We found that the SHORTROOT (SHR) transcription factor together with its target transcription factors SCARECROW (SCR), SCARECROW-LIKE23 (SCL23) and JACKDAW (JKD), promotes formation of lateral organs and controls shoot meristem size. SHR, SCR, SCL23 and JKD are expressed in distinct, but partially overlapping patterns in the SAM. They can physically interact and activate expression of key cell cycle regulators such as CYCLIND6;1 (CYCD6;1) to promote the formation of new cell layers. In the peripheral zone, auxin accumulates at sites of lateral organ primordia initiation and activates SHR expression via the auxin response factor MONOPTEROS (MP) and auxin response elements in the SHR promoter. In the central zone, the SHR-target SCL23 physically interacts with the key stem cell regulator WUSCHEL (WUS) to promote stem cell fate. Both SCL23 and WUS expression are subject to negative feedback regulation from stem cells through the CLAVATA signaling pathway. Together, our findings illustrate how SHR-dependent transcription factor complexes act in different domains of the shoot meristem to mediate cell division and auxin dependent organ initiation in the peripheral zone, and coordinate this activity with stem cell maintenance in the central zone of the SAM.

Data availability

Original microscopy and image analysis data referenced in the manuscriptare accessible through BioStudies at the following link:https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD903

Article and author information

Author details

  1. Elmehdi Bahafid

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Imke Bradtmöller

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann M Thies

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thi TON Nguyen

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Crisanto Gutierrez

    Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8905-8222
  6. Bénédicte Desvoyes

    Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Yvonne Stahl

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ikram Blilou

    Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  9. Rüdiger GW Simon

    Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    For correspondence
    ruediger.simon@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1317-7716

Funding

Deutsche Forschungsgemeinschaft (CSCS)

  • Rüdiger GW Simon

Deutsche Forschungsgemeinschaft (EXC2048)

  • Elmehdi Bahafid
  • Imke Bradtmöller
  • Ann M Thies
  • Thi TON Nguyen
  • Yvonne Stahl
  • Rüdiger GW Simon

Deutsche Forschungsgemeinschaft (CRC1208)

  • Rüdiger GW Simon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Bahafid et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,452
    views
  • 479
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elmehdi Bahafid
  2. Imke Bradtmöller
  3. Ann M Thies
  4. Thi TON Nguyen
  5. Crisanto Gutierrez
  6. Bénédicte Desvoyes
  7. Yvonne Stahl
  8. Ikram Blilou
  9. Rüdiger GW Simon
(2023)
The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin dependent lateral organ initiation
eLife 12:e83334.
https://doi.org/10.7554/eLife.83334

Share this article

https://doi.org/10.7554/eLife.83334

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.