The entorhinal-DG/CA3 pathway in the medial temporal lobe retains visual working memory of a simple surface feature

  1. Weizhen Xie  Is a corresponding author
  2. Marcus Cappiello
  3. Michael A Yassa
  4. Edward Ester
  5. Kareem A Zaghloul
  6. Weiwei Zhang
  1. National Institute of Neurological Disorders and Stroke, United States
  2. University of California, Riverside, United States
  3. University of California, Irvine, United States
  4. University of Nevada Reno, United States
  5. University of California Riverside, United States

Abstract

Classic models consider working memory (WM) and long-term memory as distinct mental faculties that are supported by different neural mechanisms. Yet, there are significant parallels in the computation that both types of memory require. For instance, the representation of precise item-specific memory requires the separation of overlapping neural representations of similar information. This computation has been referred to as pattern separation, which can be mediated by the entorhinal-DG/CA3 pathway of the medial temporal lobe (MTL) in service of long-term episodic memory. However, although recent evidence has suggested that the MTL is involved in WM, the extent to which the entorhinal-DG/CA3 pathway supports precise item-specific WM has remained elusive. Here, we combine an established orientation WM task with high-resolution fMRI to test the hypothesis that the entorhinal-DG/CA3 pathway retains visual WM of a simple surface feature. Participants were retrospectively cued to retain one of the two studied orientation gratings during a brief delay period and then tried to reproduce the cued orientation as precisely as possible. By modeling the delay-period activity to reconstruct the retained WM content, we found that the anterior-lateral entorhinal cortex (aLEC) and the hippocampal DG/CA3 subfield both contain item-specific WM information that is associated with subsequent recall fidelity. Together, these results highlight the contribution of MTL circuitry to item-specific WM representation.

Data availability

Non-identified data (e.g., MTL activities across ROIs and trial-by-trial behavior responses) and custom codes are available via the Open Science Framework repository (https://osf.io/zvdnr/).

Article and author information

Author details

  1. Weizhen Xie

    Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    weizhen.xie@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4655-6496
  2. Marcus Cappiello

    Department of Psychology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael A Yassa

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8635-1498
  4. Edward Ester

    University of Nevada Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kareem A Zaghloul

    Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8575-3578
  6. Weiwei Zhang

    Department of Psychology, University of California Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (R01MH117132)

  • Weiwei Zhang

National Institute of Neurological Disorders and Stroke (ZIA-NS003144)

  • Kareem A Zaghloul

National Institute of Neurological Disorders and Stroke (NCFA)

  • Weizhen Xie

National Institute of Neurological Disorders and Stroke (K99NS126492)

  • Weizhen Xie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants provided written informed consent before the study, following the protocol approved by the Internal Review Broad of the University of California, Riverside.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,255
    views
  • 230
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weizhen Xie
  2. Marcus Cappiello
  3. Michael A Yassa
  4. Edward Ester
  5. Kareem A Zaghloul
  6. Weiwei Zhang
(2023)
The entorhinal-DG/CA3 pathway in the medial temporal lobe retains visual working memory of a simple surface feature
eLife 12:e83365.
https://doi.org/10.7554/eLife.83365

Share this article

https://doi.org/10.7554/eLife.83365

Further reading

    1. Neuroscience
    Mirela Zaneva, Tao Coll-Martín ... Alyssa Hillary Zisk
    Feature Article

    Since its inception, the concept of neurodiversity has been defined in a number of different ways, which can cause confusion among those hoping to educate themselves about the topic. Learning about neurodiversity can also be challenging because there is a lack of well-curated, appropriately contextualized information on the topic. To address such barriers, we present an annotated reading list that was developed collaboratively by a neurodiverse group of researchers. The nine themes covered in the reading list are: the history of neurodiversity; ways of thinking about neurodiversity; the importance of lived experience; a neurodiversity paradigm for autism science; beyond deficit views of ADHD; expanding the scope of neurodiversity; anti-ableism; the need for robust theory and methods; and integration with open and participatory work. We hope this resource can support readers in understanding some of the key ideas and topics within neurodiversity, and that it can further orient researchers towards more rigorous, destigmatizing, accessible, and inclusive scientific practices.

    1. Neuroscience
    Meera Chikermane, Liz Weerdmeester ... Wolf Julian Neumann
    Research Article

    Brain rhythms can facilitate neural communication for the maintenance of brain function. Beta rhythms (13–35 Hz) have been proposed to serve multiple domains of human ability, including motor control, cognition, memory, and emotion, but the overarching organisational principles remain unknown. To uncover the circuit architecture of beta oscillations, we leverage normative brain data, analysing over 30 hr of invasive brain signals from 1772 channels from cortical areas in epilepsy patients, to demonstrate that beta is the most distributed cortical brain rhythm. Next, we identify a shared brain network from beta-dominant areas with deeper brain structures, like the basal ganglia, by mapping parametrised oscillatory peaks to whole-brain functional and structural MRI connectomes. Finally, we show that these networks share significant overlap with dopamine uptake as indicated by positron emission tomography. Our study suggests that beta oscillations emerge in cortico-subcortical brain networks that are modulated by dopamine. It provides the foundation for a unifying circuit-based conceptualisation of the functional role of beta activity beyond the motor domain and may inspire an extended investigation of beta activity as a feedback signal for closed-loop neurotherapies for dopaminergic disorders.