Conserved allosteric inhibition mechanism in SLC1 transporters

  1. Yang Dong
  2. Jiali Wang
  3. Rachel-Ann Garibsingh
  4. Keino Hutchinson
  5. Yueyue Shi
  6. Gilad Eisenberg
  7. Xiaozhen Yu
  8. Avner Schlessinger  Is a corresponding author
  9. Christof Grewer  Is a corresponding author
  1. Binghamton University, United States
  2. Icahn School of Medicine at Mount Sinai, United States

Abstract

Excitatory Amino Acid Transporter 1 (EAAT1) is a plasma-membrane glutamate transporter belonging to the SLC1 family of solute carriers . It plays a key role in neurotransmitter transport and contributes to the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, a highly potent and non-competitive inhibitor of EAAT1. Alanine Serine Cysteine Transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine, serine and alanine between intracellular and extracellular compartments in a Na+ dependent manner. ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2 with relatively low affinity. Guided by computational modeling using ligand docking and molecular dynamics (MD) simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double mutant transporter, 100% of the inhibitory effect of UCPH-101 on anion current could be restored, and the apparent affinity was increased (Ki = 9.3 mM), much closer to the EAAT1 value of 0.6 mM. Finally, we identify a novel non-competitive ASCT2 inhibitor, identified through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective inhibitors can be designed that target the ASCT2 allosteric binding site.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. The original, source data files were uploaded as spreadsheets for figures 3-10, Table 1, and Figure supplements 3,4,5,6 and 9. The MD parametrization files for UCPH-101 are also included.

Article and author information

Author details

  1. Yang Dong

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiali Wang

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9520-8140
  3. Rachel-Ann Garibsingh

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Ney York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Keino Hutchinson

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yueyue Shi

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gilad Eisenberg

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaozhen Yu

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Avner Schlessinger

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    avner.schlessinger@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4007-7814
  9. Christof Grewer

    Department of Chemistry, Binghamton University, Binghamton, United States
    For correspondence
    cgrewer@binghamton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8342-9878

Funding

National Institutes of Health (R01 GM108911)

  • Avner Schlessinger
  • Christof Grewer

National Institutes of Health (T32 CA078207)

  • Rachel-Ann Garibsingh

National Institutes of Health (R15 GM135843-01)

  • Christof Grewer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy B Stockbridge, University of Michigan, United States

Version history

  1. Received: September 14, 2022
  2. Preprint posted: September 22, 2022 (view preprint)
  3. Accepted: February 27, 2023
  4. Accepted Manuscript published: March 1, 2023 (version 1)
  5. Accepted Manuscript updated: March 1, 2023 (version 2)
  6. Version of Record published: March 15, 2023 (version 3)

Copyright

© 2023, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 951
    Page views
  • 180
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Dong
  2. Jiali Wang
  3. Rachel-Ann Garibsingh
  4. Keino Hutchinson
  5. Yueyue Shi
  6. Gilad Eisenberg
  7. Xiaozhen Yu
  8. Avner Schlessinger
  9. Christof Grewer
(2023)
Conserved allosteric inhibition mechanism in SLC1 transporters
eLife 12:e83464.
https://doi.org/10.7554/eLife.83464

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Ashton J Curtis, Jian Zhu ... Matthew G Gold
    Research Article Updated

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Takeo Saneyoshi
    Insight

    Interactions between an enzyme kinase, an ion channel and cytoskeletal proteins maintain the structure of synapses involved in memory formation.