Conserved allosteric inhibition mechanism in SLC1 transporters

  1. Yang Dong
  2. Jiali Wang
  3. Rachel-Ann Garibsingh
  4. Keino Hutchinson
  5. Yueyue Shi
  6. Gilad Eisenberg
  7. Xiaozhen Yu
  8. Avner Schlessinger  Is a corresponding author
  9. Christof Grewer  Is a corresponding author
  1. Binghamton University, United States
  2. Icahn School of Medicine at Mount Sinai, United States

Abstract

Excitatory Amino Acid Transporter 1 (EAAT1) is a plasma-membrane glutamate transporter belonging to the SLC1 family of solute carriers . It plays a key role in neurotransmitter transport and contributes to the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, a highly potent and non-competitive inhibitor of EAAT1. Alanine Serine Cysteine Transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine, serine and alanine between intracellular and extracellular compartments in a Na+ dependent manner. ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2 with relatively low affinity. Guided by computational modeling using ligand docking and molecular dynamics (MD) simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double mutant transporter, 100% of the inhibitory effect of UCPH-101 on anion current could be restored, and the apparent affinity was increased (Ki = 9.3 mM), much closer to the EAAT1 value of 0.6 mM. Finally, we identify a novel non-competitive ASCT2 inhibitor, identified through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective inhibitors can be designed that target the ASCT2 allosteric binding site.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. The original, source data files were uploaded as spreadsheets for figures 3-10, Table 1, and Figure supplements 3,4,5,6 and 9. The MD parametrization files for UCPH-101 are also included.

Article and author information

Author details

  1. Yang Dong

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiali Wang

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9520-8140
  3. Rachel-Ann Garibsingh

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Ney York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Keino Hutchinson

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yueyue Shi

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gilad Eisenberg

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaozhen Yu

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Avner Schlessinger

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    avner.schlessinger@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4007-7814
  9. Christof Grewer

    Department of Chemistry, Binghamton University, Binghamton, United States
    For correspondence
    cgrewer@binghamton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8342-9878

Funding

National Institutes of Health (R01 GM108911)

  • Avner Schlessinger
  • Christof Grewer

National Institutes of Health (T32 CA078207)

  • Rachel-Ann Garibsingh

National Institutes of Health (R15 GM135843-01)

  • Christof Grewer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,310
    views
  • 235
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Dong
  2. Jiali Wang
  3. Rachel-Ann Garibsingh
  4. Keino Hutchinson
  5. Yueyue Shi
  6. Gilad Eisenberg
  7. Xiaozhen Yu
  8. Avner Schlessinger
  9. Christof Grewer
(2023)
Conserved allosteric inhibition mechanism in SLC1 transporters
eLife 12:e83464.
https://doi.org/10.7554/eLife.83464

Share this article

https://doi.org/10.7554/eLife.83464

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Amy N Shore, Keyong Li ... Matthew C Weston
    Research Article

    More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.

    1. Structural Biology and Molecular Biophysics
    Shristi Pawnikar, Brenda S Magenheimer ... Yinglong Miao
    Research Article

    Polycystin-1 (PC1) is the protein product of the PKD1 gene whose mutation causes autosomal dominant Polycystic Kidney Disease (ADPKD). PC1 is an atypical G protein-coupled receptor (GPCR) with an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal and membrane-embedded C-terminal (CTF) fragments. Recently, activation of PC1 CTF signaling was shown to be regulated by a stalk tethered agonist (TA), resembling the mechanism observed for adhesion GPCRs. Here, synthetic peptides of the first 9- (p9), 17- (p17), and 21-residues (p21) of the PC1 stalk TA were shown to re-activate signaling by a stalkless CTF mutant in human cell culture assays. Novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) simulations elucidated binding conformations of p9, p17, and p21 and revealed multiple specific binding regions to the stalkless CTF. Peptide agonists binding to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of stalk TA-mediated PC1 CTF activation. Additional sequence coevolution analyses showed the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. These insights into the structural dynamic mechanism of PC1 activation by TA peptide agonists provide an in-depth understanding that will facilitate the development of therapeutics targeting PC1 for ADPKD treatment.