Protein feeding mediates sex pheromone biosynthesis in an insect

  1. Shiyu Gui
  2. Boaz Yuval
  3. Tobias Engl
  4. Yongyue Lu
  5. Daifeng Cheng  Is a corresponding author
  1. South China Agricultural University, China
  2. Hebrew University of Jerusalem, Israel
  3. Max Planck Institute for Chemical Ecology, Germany

Abstract

Protein feeding is critical for male reproductive success in many insect species. However, how protein affects the reproduction remains largely unknown. Using Bactrocera dorsalis as the study model, we investigated how protein feeding regulated sex pheromone synthesis. We show that protein ingestion is essential for sex pheromone synthesis in male. While protein feeding or deprivation did not affect Bacillus abundance, transcriptome analysis revealed that sarcosine dehydrogenase (Sardh) in protein-fed males regulates the biosynthesis of sex pheromones by increasing glycine and threonine (sex pheromone precursors) contents. RNAi-mediated loss-of-function of Sardh decreases glycine, threonine and sex pheromone contents and results in decreased mating ability in males. The study links male feeding behavior with discrete patterns of gene expression that plays role in sex pheromone synthesis, which in turn translate to successful copulatory behavior of the males.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. RNA-sequencing and 16S rRNA amplicon sequencing data have been deposited in the Genome Sequence Read Archive Database of the National Genomics Data Center (BioProject PRJCA010569, PRJCA010560 and PRJCA010555).

The following data sets were generated

Article and author information

Author details

  1. Shiyu Gui

    Department of Entomology, South China Agricultural University, Guanghzou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Boaz Yuval

    Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Engl

    Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Yongyue Lu

    Department of Entomology, South China Agricultural University, Guanghzou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Daifeng Cheng

    Department of Entomology, South China Agricultural University, Guanghzou, China
    For correspondence
    chengdaifeng@scau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0918-5913

Funding

The national natural science foundation of China (3212200346)

  • Daifeng Cheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sonia Sen, Tata Institute for Genetics and Society, India

Publication history

  1. Received: September 15, 2022
  2. Accepted: January 18, 2023
  3. Accepted Manuscript published: January 19, 2023 (version 1)

Copyright

© 2023, Gui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 102
    Page views
  • 31
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shiyu Gui
  2. Boaz Yuval
  3. Tobias Engl
  4. Yongyue Lu
  5. Daifeng Cheng
(2023)
Protein feeding mediates sex pheromone biosynthesis in an insect
eLife 12:e83469.
https://doi.org/10.7554/eLife.83469
  1. Further reading

Further reading

    1. Ecology
    2. Genetics and Genomics
    Henrik Krehenwinkel, Sven Weber ... Michael Veith
    Research Article Updated

    A major limitation of current reports on insect declines is the lack of standardized, long-term, and taxonomically broad time series. Here, we demonstrate the utility of environmental DNA from archived leaf material to characterize plant-associated arthropod communities. We base our work on several multi-decadal leaf time series from tree canopies in four land use types, which were sampled as part of a long-term environmental monitoring program across Germany. Using these highly standardized and well-preserved samples, we analyze temporal changes in communities of several thousand arthropod species belonging to 23 orders using metabarcoding and quantitative PCR. Our data do not support widespread declines of α-diversity or genetic variation within sites. Instead, we find a gradual community turnover, which results in temporal and spatial biotic homogenization, across all land use types and all arthropod orders. Our results suggest that insect decline is more complex than mere α-diversity loss, but can be driven by β-diversity decay across space and time.

    1. Ecology
    2. Evolutionary Biology
    Zinan Wang, Joseph P Receveur ... Henry Chung
    Research Article Updated

    Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.