Genetic dissection of mutual interference between two consecutive learning tasks in Drosophila
Abstract
Animals can continuously learn different tasks to adapt to changing environments and therefore have strategies to effectively cope with inter-task interference, including both proactive interference (Pro-I) and retroactive interference (Retro-I). Many biological mechanisms are known to contribute to learning, memory, and forgetting for a single task, however, mechanisms involved only when learning sequential different tasks are relatively poorly understood. Here, we dissect the respective molecular mechanisms of Pro-I and Retro-I between two consecutive associative learning tasks in Drosophila. Pro-I is more sensitive to inter-task interval (ITI) than Retro-I. They occur together at short ITI (<20 min), while only Retro-I remains significant at ITI beyond 20 min. Acutely overexpressing Corkscrew (CSW), an evolutionarily conserved protein tyrosine phosphatase SHP2, in mushroom body (MB) neurons reduces Pro-I, whereas acute knockdown of CSW exacerbates Pro-I. Such function of CSW is further found to rely on the γ subset of MB neurons and the downstream Raf/MAPK pathway. In contrast, manipulating CSW does not affect Retro-I as well as a single learning task. Interestingly, manipulation of Rac1, a molecule that regulates Retro-I, does not affect Pro-I. Thus, our findings suggest that learning different tasks consecutively triggers distinct molecular mechanisms to tune proactive and retroactive interference.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file
Article and author information
Author details
Funding
National Natural Science Foundation of China (31970955)
- Qian Li
National Natural Science Foundation of China (32021002)
- Yi Zhong
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Zhao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,115
- views
-
- 229
- downloads
-
- 1
- citation
Views, downloads and citations are aggregated across all versions of this paper published by eLife.