Genetic dissection of mutual interference between two consecutive learning tasks in Drosophila

  1. Jianjian Zhao
  2. Xuchen Zhang
  3. Bohan Zhao
  4. Wantong Hu
  5. Tongxin Diao
  6. Liyuan Wang
  7. Yi Zhong
  8. Qian Li  Is a corresponding author
  1. Tsinghua University, China
  2. Howard Hughes Medical Institute, Stanford University, United States
  3. Scripps Research Institute, United States

Abstract

Animals can continuously learn different tasks to adapt to changing environments and therefore have strategies to effectively cope with inter-task interference, including both proactive interference (Pro-I) and retroactive interference (Retro-I). Many biological mechanisms are known to contribute to learning, memory, and forgetting for a single task, however, mechanisms involved only when learning sequential different tasks are relatively poorly understood. Here, we dissect the respective molecular mechanisms of Pro-I and Retro-I between two consecutive associative learning tasks in Drosophila. Pro-I is more sensitive to inter-task interval (ITI) than Retro-I. They occur together at short ITI (<20 min), while only Retro-I remains significant at ITI beyond 20 min. Acutely overexpressing Corkscrew (CSW), an evolutionarily conserved protein tyrosine phosphatase SHP2, in mushroom body (MB) neurons reduces Pro-I, whereas acute knockdown of CSW exacerbates Pro-I. Such function of CSW is further found to rely on the γ subset of MB neurons and the downstream Raf/MAPK pathway. In contrast, manipulating CSW does not affect Retro-I as well as a single learning task. Interestingly, manipulation of Rac1, a molecule that regulates Retro-I, does not affect Pro-I. Thus, our findings suggest that learning different tasks consecutively triggers distinct molecular mechanisms to tune proactive and retroactive interference.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Jianjian Zhao

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xuchen Zhang

    Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bohan Zhao

    Department of Neuroscience, Scripps Research Institute, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9177-1278
  4. Wantong Hu

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Tongxin Diao

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Liyuan Wang

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yi Zhong

    School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7927-5976
  8. Qian Li

    School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    liqian8@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7317-1570

Funding

National Natural Science Foundation of China (31970955)

  • Qian Li

National Natural Science Foundation of China (32021002)

  • Yi Zhong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hiromu Tanimoto, Max-Planck Institut für Neurobiologie, Germany

Version history

  1. Received: September 16, 2022
  2. Preprint posted: October 18, 2022 (view preprint)
  3. Accepted: March 9, 2023
  4. Accepted Manuscript published: March 10, 2023 (version 1)
  5. Version of Record published: March 21, 2023 (version 2)

Copyright

© 2023, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 907
    views
  • 190
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jianjian Zhao
  2. Xuchen Zhang
  3. Bohan Zhao
  4. Wantong Hu
  5. Tongxin Diao
  6. Liyuan Wang
  7. Yi Zhong
  8. Qian Li
(2023)
Genetic dissection of mutual interference between two consecutive learning tasks in Drosophila
eLife 12:e83516.
https://doi.org/10.7554/eLife.83516

Share this article

https://doi.org/10.7554/eLife.83516

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.