Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains

  1. Artur Meller
  2. Jeffrey M. Lotthammer
  3. Louis G Smith
  4. Borna Novak
  5. Lindsey A Lee
  6. Catherine C Kuhn
  7. Lina Greenberg
  8. Leslie A Leinwand
  9. Michael J Greenberg
  10. Gregory R Bowman  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Pennsylvania, United States
  3. University of Colorado Boulder, United States

Abstract

The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least 6 of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 milliseconds of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin’s binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 mM vs. 0.36 mM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.

Data availability

Experimental, pocket volume, docking, and trajectory clustering data have been deposited in OSF under accession code CV6D2. Scripts and notebooks used to generate all figures are available in our GitHub repository (https://github.com/bowman-lab/blebbistatin-specificity).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Artur Meller

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5504-2684
  2. Jeffrey M. Lotthammer

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Louis G Smith

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Borna Novak

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lindsey A Lee

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine C Kuhn

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lina Greenberg

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Leslie A Leinwand

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1470-4810
  9. Michael J Greenberg

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1320-3547
  10. Gregory R Bowman

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    grbowman@seas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2083-4892

Funding

National Institutes of Health (1F30HL162431-01A1)

  • Artur Meller

National Institutes of Health (R01 GM124007)

  • Gregory R Bowman

National Institutes of Health (RF1AG067194)

  • Gregory R Bowman

National Institutes of Health (R01 HL141086)

  • Michael J Greenberg

National Institutes of Health (GM 20909)

  • Leslie A Leinwand

National Science Foundation (DGE2139839)

  • Jeffrey M. Lotthammer

National Science Foundation (MCB-1552471)

  • Gregory R Bowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Donald Hamelberg, Georgia State University, United States

Publication history

  1. Preprint posted: September 5, 2022 (view preprint)
  2. Received: September 21, 2022
  3. Accepted: January 23, 2023
  4. Accepted Manuscript published: January 27, 2023 (version 1)
  5. Version of Record published: March 8, 2023 (version 2)

Copyright

© 2023, Meller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 801
    Page views
  • 146
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Artur Meller
  2. Jeffrey M. Lotthammer
  3. Louis G Smith
  4. Borna Novak
  5. Lindsey A Lee
  6. Catherine C Kuhn
  7. Lina Greenberg
  8. Leslie A Leinwand
  9. Michael J Greenberg
  10. Gregory R Bowman
(2023)
Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains
eLife 12:e83602.
https://doi.org/10.7554/eLife.83602

Further reading

    1. Computational and Systems Biology
    David Elkind, Hannah Hochgerner ... Amit Zeisel
    Research Article Updated

    The mouse brain is by far the most intensively studied among mammalian brains, yet basic measures of its cytoarchitecture remain obscure. For example, quantifying cell numbers, and the interplay of sex, strain, and individual variability in cell density and volume is out of reach for many regions. The Allen Mouse Brain Connectivity project produces high-resolution full brain images of hundreds of brains. Although these were created for a different purpose, they reveal details of neuroanatomy and cytoarchitecture. Here, we used this population to systematically characterize cell density and volume for each anatomical unit in the mouse brain. We developed a DNN-based segmentation pipeline that uses the autofluorescence intensities of images to segment cell nuclei even within the densest regions, such as the dentate gyrus. We applied our pipeline to 507 brains of males and females from C57BL/6J and FVB.CD1 strains. Globally, we found that increased overall brain volume does not result in uniform expansion across all regions. Moreover, region-specific density changes are often negatively correlated with the volume of the region; therefore, cell count does not scale linearly with volume. Many regions, including layer 2/3 across several cortical areas, showed distinct lateral bias. We identified strain-specific or sex-specific differences. For example, males tended to have more cells in extended amygdala and hypothalamic regions (MEA, BST, BLA, BMA, and LPO, AHN) while females had more cells in the orbital cortex (ORB). Yet, inter-individual variability was always greater than the effect size of a single qualifier. We provide the results of this analysis as an accessible resource for the community.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Magdalena L Russell, Noah Simon ... Frederick A Matsen IV
    Research Article

    To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRβ repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.