Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains

  1. Artur Meller
  2. Jeffrey M. Lotthammer
  3. Louis G Smith
  4. Borna Novak
  5. Lindsey A Lee
  6. Catherine C Kuhn
  7. Lina Greenberg
  8. Leslie A Leinwand
  9. Michael J Greenberg
  10. Gregory R Bowman  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Pennsylvania, United States
  3. University of Colorado Boulder, United States

Abstract

The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least 6 of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 milliseconds of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin’s binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 mM vs. 0.36 mM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.

Data availability

Experimental, pocket volume, docking, and trajectory clustering data have been deposited in OSF under accession code CV6D2. Scripts and notebooks used to generate all figures are available in our GitHub repository (https://github.com/bowman-lab/blebbistatin-specificity).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Artur Meller

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5504-2684
  2. Jeffrey M. Lotthammer

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Louis G Smith

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Borna Novak

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lindsey A Lee

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine C Kuhn

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lina Greenberg

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Leslie A Leinwand

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1470-4810
  9. Michael J Greenberg

    Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1320-3547
  10. Gregory R Bowman

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    grbowman@seas.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2083-4892

Funding

National Institutes of Health (1F30HL162431-01A1)

  • Artur Meller

National Institutes of Health (R01 GM124007)

  • Gregory R Bowman

National Institutes of Health (RF1AG067194)

  • Gregory R Bowman

National Institutes of Health (R01 HL141086)

  • Michael J Greenberg

National Institutes of Health (GM 20909)

  • Leslie A Leinwand

National Science Foundation (DGE2139839)

  • Jeffrey M. Lotthammer

National Science Foundation (MCB-1552471)

  • Gregory R Bowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Meller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,540
    views
  • 237
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Artur Meller
  2. Jeffrey M. Lotthammer
  3. Louis G Smith
  4. Borna Novak
  5. Lindsey A Lee
  6. Catherine C Kuhn
  7. Lina Greenberg
  8. Leslie A Leinwand
  9. Michael J Greenberg
  10. Gregory R Bowman
(2023)
Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains
eLife 12:e83602.
https://doi.org/10.7554/eLife.83602

Share this article

https://doi.org/10.7554/eLife.83602

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.