Antimicrobial Resistance: Adapt or perish

Microbial communities in wastewater treatment plants provide insights into the development and mechanisms of antimicrobial resistance.
  1. Rohan BH Williams  Is a corresponding author
  1. Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore

Bacteria and other microbes are probably the most successful life forms on Earth. They are ubiquitous and can survive in a large range of habitats, from extreme environments to the human body. One of the reasons for their success is their potential to adapt to changing conditions, including drug treatments.

Antimicrobial resistance – the ability of bacteria to evolve resistance to drug treatments, including antibiotics – poses a major threat to health interventions (McEwen and Collignon, 2018). Although antimicrobial resistance occurs naturally, the widespread and often uncontrolled use of antibiotics in both humans and livestock have exacerbated this ability. As a consequence, treatment of many common bacterial infections, such as sepsis, or urinary and sexually transmitted infections, is now compromised.

Bacteria acquire antimicrobial resistance in two main ways: one is through favourable mutations in the DNA during cell replication; the other is by exchanging genetic material that often contain genes mediating antimicrobial resistance, also known as horizontal gene transfer (Haudiquet et al., 2022). While the mechanisms of genetic transfers – and how they contribute to antibiotics resistance – have been understood for decades, it has been less clear how they work in the ‘real world’. Now, in eLife, Paul Wilmes and colleagues at the University of Luxembourg – including Laura de Nies as first author – report new insights about antimicrobial resistance using wastewater treatment plants as an example (de Nies et al., 2022).

While microbial communities in wastewater thrive on the nutrient-rich streams from sewage systems, they also encounter a range of micropollutants arising from human domestic and industrial activity, including antibiotics. Bacteria – including the ones carrying antimicrobial resistance genes – also enter the wastewater system. These conditions provide ample opportunities for the evolution and/or transmission of antimicrobial resistance. Subsequently, the risk of such resistant bacteria being transmitted into natural water systems and eventually back into human or animal populations, is extremely high (Pruden et al., 2021).

The researchers analysed previously collected multi-omics datasets that contained sequences of all the DNA found in a wastewater treatment plant. This allowed them to identify both the genomes of species within the community and the mobile genetic elements that can be transferred between bacteria. Using metatranscriptomics and metaproteomics, two techniques that measure which genes are active (McDaniel et al., 2021), de Nies et al. were able to further analyse gene expression at the level of the entire microbial community. Samples were collected over one and a half years, which allowed the researchers to assess the dynamic changes in the inter-relationship between microbes and mobile genetic elements.

In total, de Nies et al. identified 29 different major types of antimicrobial resistance genes. The relative abundance of these types changed slightly over time, which could be linked to changes in resistant entities within the community, either due to the transfer of such genes, to changes in the composition of bacteria, or both. Overall, antimicrobial genes that provide protection against multiple drugs, and those that provide resistance against two common types of antibiotics (aminoglycosides and beta lactams) were both abundant and highly expressed.

Interestingly, the most highly expressed genes were related to resistance against antimicrobial peptides, which are part of the innate immune system in multicellular organisms. One of these was a gene called YojI, which encodes resistance to microcin, a common toxin that is widely produced by bacteria and other prokaryotic species. It was found in about 90% of all expressed transcripts attributed to this type of antimicrobial resistance, suggesting that many species in the community produce microcin as a survival strategy, and thus also require resistance to toxins produced by other species.

To better understand the mechanisms underlying antimicrobial resistance within microbial communities in wastewater, de Nies et al. next focused on two relevant types of mobile genetic elements that convey antimicrobial resistance genes: plasmids (small, circular DNA molecules) and bacteriophages (viruses that infect bacteria). The analyses confirmed that the majority of antimicrobial resistance genes are harboured in bacterial chromosomal DNA, but plasmids and phages nevertheless transmitted 11% and 7% of those genes, respectively.

There appears to be a preferential link between the types of resistance genes and the types of mobile genetic element that carry them. Further analyses indicated that several human pathogenic bacteria only express antimicrobial resistance genes associated with plasmids, which suggests that these genes may be more easily and widely transmitted. The study by de Nies et al. also documents a wide variety of resistance genes in a key set of human pathogens, known as the ESKAPEE species, that are also present in the microbial community of the wastewater treatment plant.

The work of de Nies et al. highlights how variable the transmission of resistance pathways within complex environments can be. More targeted observational studies may be warranted to fully understand the transmission flows of these genetic materials. For example, the new metagenomic assays that can infer the colocalization of DNA from chromosomes and mobile genetic elements (within the same microbial cell) would paint a more accurate picture (Stalder et al., 2019); but these techniques are also much more complex compared to bulk DNA sequencing.

Wastewater treatment plants play a critical role in both mitigating the impact of human waste on natural water sources and preventing ‘feed-backs’ of pathogens into human populations. They are also important surveillance systems that can monitor the spread of viruses that people shed in their faeces. Understanding the various pathways of resistance transmission – including the role of plasmids and phages – will help to understand the ecological relationships between human, animals and the natural environment. In the future, wastewater plants could be used to monitor antimicrobial resistance and their potential threat to human health, and to guide initiatives that prevent the release of such resistant bacteria back into the environment (Pruden et al., 2021).


Article and author information

Author details

  1. Rohan BH Williams

    Rohan BH Williams is in the Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1286-5277

Publication history

  1. Version of Record published: November 8, 2022 (version 1)


© 2022, Williams

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohan BH Williams
Antimicrobial Resistance: Adapt or perish
eLife 11:e83617.
  1. Further reading

Further reading

    1. Microbiology and Infectious Disease
    Carolin Gerke, Liane Bauersfeld ... Anne Halenius
    Research Article

    Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) β2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ffion R Hammond, Amy Lewis ... Philip M Elks
    Research Article

    Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.