A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0

  1. Jasenkio Zivanov  Is a corresponding author
  2. Joaquín Otón
  3. Zunlong Ke
  4. Andriko von Kügelgen
  5. Euan Pyle
  6. Kun Qu
  7. Dustin Morado
  8. Daniel Castaño-Díez
  9. Giulia Zanetti
  10. Tanmay AM Bharat
  11. John AG Briggs
  12. Sjors HW Scheres  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. ALBA Synchrotron, Spain
  3. Birkbeck, University of London, United Kingdom
  4. University of Basel, Switzerland

Abstract

We present a new approach for macromolecular structure determination from multiple particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on 3D data models, we propose to optimise a regularised likelihood target that approximates a function of the 2D experimental images. In addition, analogous to Bayesian polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise tilt series alignments, beam-induced motions of the particles throughout the tilt series acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope. Implementation of our approaches in the open-source software package RELION aims to facilitate their general use, in particular for those researchers who are already familiar with its single-particle analysis tools. We illustrate for three applications that our approaches allow structure determination from cryo-ET data to resolutions sufficient for de novo atomic modelling.

Data availability

We have only used previously published cryo-EM data sets for testing our software.Reconstructed maps and atomic models generated in this study have been submitted to the EMDB and PDB, with entry codes as indicated in Table 1.

The following previously published data sets were used

Article and author information

Author details

  1. Jasenkio Zivanov

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    jasenko.zivanov@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8407-0759
  2. Joaquín Otón

    ALBA Synchrotron, Cerdanyola del Vallès, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2195-4730
  3. Zunlong Ke

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8408-850X
  4. Andriko von Kügelgen

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0017-2414
  5. Euan Pyle

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4633-4917
  6. Kun Qu

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Dustin Morado

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Daniel Castaño-Díez

    University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  9. Giulia Zanetti

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    Giulia Zanetti, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1905-0342
  10. Tanmay AM Bharat

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0168-0277
  11. John AG Briggs

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3990-6910
  12. Sjors HW Scheres

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0462-6540

Funding

UK Research and Innovation (MC_UP_A025_1013)

  • Sjors HW Scheres

UK Research and Innovation (MC_UP_1201/16)

  • John AG Briggs

European Research Council (ERC-CoG-2014 grant 648432)

  • John AG Briggs

European Research Council (ERC-StG-2019 grant 852915)

  • Giulia Zanetti

Swiss National Science Foundation (205321_179041/1)

  • Daniel Castaño-Díez

UK Research and Innovation (BBSRC grant BB/T002670/1)

  • Giulia Zanetti

European Research Council (ERC-AdG-2015 grant 692726)

  • Jasenkio Zivanov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zivanov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,139
    views
  • 638
    downloads
  • 160
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasenkio Zivanov
  2. Joaquín Otón
  3. Zunlong Ke
  4. Andriko von Kügelgen
  5. Euan Pyle
  6. Kun Qu
  7. Dustin Morado
  8. Daniel Castaño-Díez
  9. Giulia Zanetti
  10. Tanmay AM Bharat
  11. John AG Briggs
  12. Sjors HW Scheres
(2022)
A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0
eLife 11:e83724.
https://doi.org/10.7554/eLife.83724

Share this article

https://doi.org/10.7554/eLife.83724

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.