A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0

  1. Jasenko Zivanov  Is a corresponding author
  2. Joaquín Otón
  3. Zunlong Ke
  4. Andriko von Kügelgen
  5. Euan Pyle
  6. Kun Qu
  7. Dustin Morado
  8. Daniel Castaño-Díez
  9. Giulia Zanetti
  10. Tanmay AM Bharat
  11. John AG Briggs
  12. Sjors HW Scheres  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. ALBA Synchrotron, Spain
  3. Birkbeck, University of London, United Kingdom
  4. University of Basel, Switzerland

Abstract

We present a new approach for macromolecular structure determination from multiple particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on 3D data models, we propose to optimise a regularised likelihood target that approximates a function of the 2D experimental images. In addition, analogous to Bayesian polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise tilt series alignments, beam-induced motions of the particles throughout the tilt series acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope. Implementation of our approaches in the open-source software package RELION aims to facilitate their general use, in particular for those researchers who are already familiar with its single-particle analysis tools. We illustrate for three applications that our approaches allow structure determination from cryo-ET data to resolutions sufficient for de novo atomic modelling.

Data availability

We have only used previously published cryo-EM data sets for testing our software.Reconstructed maps and atomic models generated in this study have been submitted to the EMDB and PDB, with entry codes as indicated in Table 1.

The following previously published data sets were used

Article and author information

Author details

  1. Jasenko Zivanov

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    jasenko.zivanov@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8407-0759
  2. Joaquín Otón

    ALBA Synchrotron, Cerdanyola del Vallès, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2195-4730
  3. Zunlong Ke

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8408-850X
  4. Andriko von Kügelgen

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0017-2414
  5. Euan Pyle

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4633-4917
  6. Kun Qu

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Dustin Morado

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Daniel Castaño-Díez

    University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  9. Giulia Zanetti

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    Giulia Zanetti, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1905-0342
  10. Tanmay AM Bharat

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0168-0277
  11. John AG Briggs

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3990-6910
  12. Sjors HW Scheres

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0462-6540

Funding

UK Research and Innovation (MC_UP_A025_1013)

  • Sjors HW Scheres

UK Research and Innovation (MC_UP_1201/16)

  • John AG Briggs

European Research Council (ERC-CoG-2014 grant 648432)

  • John AG Briggs

European Research Council (ERC-StG-2019 grant 852915)

  • Giulia Zanetti

Swiss National Science Foundation (205321_179041/1)

  • Daniel Castaño-Díez

UK Research and Innovation (BBSRC grant BB/T002670/1)

  • Giulia Zanetti

European Research Council (ERC-AdG-2015 grant 692726)

  • Jasenko Zivanov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zivanov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,576
    views
  • 686
    downloads
  • 216
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasenko Zivanov
  2. Joaquín Otón
  3. Zunlong Ke
  4. Andriko von Kügelgen
  5. Euan Pyle
  6. Kun Qu
  7. Dustin Morado
  8. Daniel Castaño-Díez
  9. Giulia Zanetti
  10. Tanmay AM Bharat
  11. John AG Briggs
  12. Sjors HW Scheres
(2022)
A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0
eLife 11:e83724.
https://doi.org/10.7554/eLife.83724

Share this article

https://doi.org/10.7554/eLife.83724

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.