White matter structural bases for phase accuracy during tapping synchronization

  1. Pamela Garcia-Saldivar
  2. Cynthia de León
  3. Felipe A Mendez Salcido
  4. Luis Concha  Is a corresponding author
  5. Hugo Merchant  Is a corresponding author
  1. National Autonomous University of Mexico, Mexico

Abstract

We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum, forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the corpus callosum. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the corpus callosum define an interval-selective topography.

Data availability

Data is available at OSF: https://osf.io/ynvf3/?view_only=0f30de38694a4ce38f69807dd07c1604

The following data sets were generated

Article and author information

Author details

  1. Pamela Garcia-Saldivar

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3274-4955
  2. Cynthia de León

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4488-2864
  3. Felipe A Mendez Salcido

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    Competing interests
    No competing interests declared.
  4. Luis Concha

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    For correspondence
    lconcha@unam.mx
    Competing interests
    No competing interests declared.
  5. Hugo Merchant

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    For correspondence
    hugomerchant@unam.mx
    Competing interests
    Hugo Merchant, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3488-9501

Funding

Consejo Nacional de Humanidades Ciencia y Tecnologia (A1-S-8330)

  • Hugo Merchant

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (PAPIIT IG200424)

  • Hugo Merchant

Secretaria de Ciencia y Tecnología. Ciudad de México (2342)

  • Hugo Merchant

Consejo Nacional de Humanidades Ciencia y Tecnologia (C1782)

  • Luis Concha

Consejo Nacional de Humanidades Ciencia y Tecnologia (FC-218-2023)

  • Luis Concha

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (PAPIIT AG200117)

  • Luis Concha

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (PAPIIT AG200117)

  • Luis Concha

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN213423)

  • Luis Concha

Consejo Nacional de Ciencia y Tecnología (280464)

  • Pamela Garcia-Saldivar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Thirty-two healthy human subjects without musical training volunteered to participate and gave informed consent, which complied with the Declaration of Helsinki and was approved by our Institutional Review Board. This study was approved by the Ethics Committee of the Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla with the number 049H-RM.

Copyright

© 2024, Garcia-Saldivar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 555
    views
  • 95
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pamela Garcia-Saldivar
  2. Cynthia de León
  3. Felipe A Mendez Salcido
  4. Luis Concha
  5. Hugo Merchant
(2024)
White matter structural bases for phase accuracy during tapping synchronization
eLife 13:e83838.
https://doi.org/10.7554/eLife.83838

Share this article

https://doi.org/10.7554/eLife.83838

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.