The functional form of value normalization in human reinforcement learning

  1. Sophie Bavard  Is a corresponding author
  2. Stefano Palminteri  Is a corresponding author
  1. Universität Hamburg, Germany
  2. Ecole Normale Supérieure, France

Abstract

Reinforcement learning research in humans and other species indicates that rewards are represented in a context-dependent manner. More specifically, reward representations seem to be normalized as a function of the value of the alternative options. The dominant view postulates that value context-dependence is achieved via a divisive normalization rule, inspired by perceptual decision-making research. However, behavioral and neural evidence points to another plausible mechanism: range normalization. Critically, previous experimental designs were ill-suited to disentangle the divisive and the range normalization accounts, which generate similar behavioral predictions in many circumstances. To address this question, we designed a new learning task where we manipulated, across learning contexts, the number of options and the value ranges. Behavioral and computational analyses falsify the divisive normalization account and rather provide support for the range normalization rule. Together, these results shed new light on the computational mechanisms underlying context-dependence in learning and decision-making.

Data availability

Data and codes are available here https://github.com/hrl-team/3options

Article and author information

Author details

  1. Sophie Bavard

    Department of Psychology, Universität Hamburg, Hamburg, Germany
    For correspondence
    sophie.bavard@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9283-2976
  2. Stefano Palminteri

    Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
    For correspondence
    stefano.palminteri@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5768-6646

Funding

European Research Council (101043804)

  • Stefano Palminteri

Agence Nationale de la Recherche (ANR-21-CE23-0002-02)

  • Stefano Palminteri

Agence Nationale de la Recherche (ANR-21-CE37-0008-01)

  • Stefano Palminteri

Agence Nationale de la Recherche (ANR-21-CE28-0024-01)

  • Stefano Palminteri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Kahnt, National Institute on Drug Abuse Intramural Research Program, United States

Ethics

Human subjects: The research was carried out following the principles and guidelines for experiments including human participants provided in the declaration of Helsinki (1964, revised in 2013). The INSERM Ethical Review Committee / IRB00003888 approved and participants were provided written informed consent prior to their inclusion

Version history

  1. Preprint posted: July 16, 2022 (view preprint)
  2. Received: October 2, 2022
  3. Accepted: July 9, 2023
  4. Accepted Manuscript published: July 10, 2023 (version 1)
  5. Version of Record published: August 1, 2023 (version 2)

Copyright

© 2023, Bavard & Palminteri

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,325
    views
  • 269
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Bavard
  2. Stefano Palminteri
(2023)
The functional form of value normalization in human reinforcement learning
eLife 12:e83891.
https://doi.org/10.7554/eLife.83891

Share this article

https://doi.org/10.7554/eLife.83891

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.