Abstract

Chronic myeloid leukemia (CML) is a blood cancer characterized by dysregulated production of maturing myeloid cells driven by the product of the Philadelphia chromosome, the BCR-ABL1 tyrosine kinase. Tyrosine kinase inhibitors (TKI) have proved effective in treating CML but there is still a cohort of patients who do not respond to TKI therapy even in the absence of mutations in the BCR-ABL1 kinase domain that mediate drug resistance. To discover novel strategies to improve TKI therapy in CML, we developed a nonlinear mathematical model of CML hematopoiesis that incorporates feedback control and lineage branching. Cell-cell interactions were constrained using an automated model selection method together with previous observations and new in vivo data from a chimeric BCR-ABL1 transgenic mouse model of CML. The resulting quantitative model captures the dynamics of normal and CML cells at various stages of the disease and exhibits variable responses to TKI treatment, consistent with those of CML patients. The model predicts that an increase in the proportion of CML stem cells in the bone marrow would decrease the tendency of the disease to respond to TKI therapy, in concordance with clinical data and confirmed experimentally in mice. The model further suggests that, under our assumed similarities between normal and leukemic cells, a key predictor of refractory response to TKI treatment is an increased maximum probability of self-renewal of normal hematopoietic stem cells. We use these insights to develop a clinical prognostic criterion to predict the efficacy of TKI treatment and to design strategies to improve treatment response. The model predicts that stimulating the differentiation of leukemic stem cells while applying TKI therapy can significantly improve treatment outcomes.

Data availability

Modelling code and parameter set data are available in a Github repository. Patient data is unavailable publicly as it could be used to potentially identify the patients. Deidentified raw patient transcript data will be made available to qualified researchers (academic or industry) upon request to Dr. Van Etten at vanetten@hs.uci.edu.

The following data sets were generated

Article and author information

Author details

  1. Jonathan Rodriguez

    Graduate Program in Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6414-0526
  2. Abdon Iniguez

    Graduate Program in Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nilamani Jena

    Department of Medicine, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prasanthi Tata

    Department of Medicine, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joan Liu

    Department of Medicine, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Arthur D Lander

    Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4380-5525
  7. John Lowengrub

    Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
    For correspondence
    lowengrb@math.uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1759-0900
  8. Richard A Van Etten

    Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
    For correspondence
    vanetten@hs.uci.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (1U54CA217378-01A1)

  • Arthur D Lander
  • John Lowengrub
  • Richard A Van Etten

National Institutes of Health (P30CA062203)

  • Arthur D Lander
  • John Lowengrub
  • Richard A Van Etten

National Institutes of Health (R01 CA090576)

  • Richard A Van Etten

National Science Foundation (DMS-1763272)

  • Arthur D Lander
  • John Lowengrub

National Science Foundation (DMS-1936833)

  • John Lowengrub

National Science Foundation (DMS-1953410)

  • John Lowengrub

National Science Foundation (GRFP 16-588)

  • Abdon Iniguez

Simons Foundation (594598QN)

  • Arthur D Lander
  • John Lowengrub

National Institute of General Medical Sciences (GM136624)

  • Jonathan Rodriguez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (AUP-19-159) of the University of California, Irvine.

Copyright

© 2023, Rodriguez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 477
    views
  • 94
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Rodriguez
  2. Abdon Iniguez
  3. Nilamani Jena
  4. Prasanthi Tata
  5. Joan Liu
  6. Arthur D Lander
  7. John Lowengrub
  8. Richard A Van Etten
(2023)
Predictive nonlinear modeling of malignant myelopoiesis and tyrosine kinase inhibitor therapy
eLife 12:e84149.
https://doi.org/10.7554/eLife.84149

Share this article

https://doi.org/10.7554/eLife.84149

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Cancer Biology
    Anne Fajac, Iva Simeonova ... Franck Toledo
    Research Article

    The Trp53 gene encodes several isoforms of elusive biological significance. Here, we show that mice lacking the Trp53 alternatively spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in Trp53+/+Eμ-Myc males compared to Trp53ΔAS/ΔAS Eμ-Myc males, but also compared to Trp53+/+Eμ-Myc and Trp53ΔAS/ΔAS Eμ-Myc females. Pre-tumoral splenic cells from Trp53+/+Eμ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We identified Ackr4 as a p53 target gene whose p53-mediated transactivation is inhibited by estrogens, and as a male-specific factor of good prognosis relevant for murine Eμ-Myc-induced and human Burkitt lymphomas. Furthermore, the knockout of ACKR4 increased the chemokine-guided migration of Burkitt lymphoma cells. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven lymphomagenesis.