Identification of a weight loss-associated causal eQTL in MTIF3 and the effects of MTIF3 deficiency on human adipocyte function

Abstract

Genetic variation at the MTIF3 (Mitochondrial Translational Initiation Factor 3) locus has been robustly associated with obesity in humans, but the functional basis behind this association is not known. Here, we applied luciferase reporter assay to map potential functional variants in the haplotype block tagged by rs1885988 and used CRISPR-Cas9 to edit the potential functional variants to confirm the regulatory effects on MTIF3 expression. We further conducted functional studies on MTIF3-deficient differentiated human white adipocyte cell line (hWAs-iCas9), generated through inducible expression of CRISPR-Cas9 combined with delivery of synthetic MTIF3-targeting guide RNA. We demonstrate that rs67785913-centered DNA fragment (in LD with rs1885988, r2>0.8) enhances transcription in a luciferase reporter assay, and CRISPR-Cas9 edited rs67785913 CTCT cells show significantly higher MTIF3 expression than rs67785913 CT cells. Perturbed MTIF3 expression led to reduced mitochondrial respiration and endogenous fatty acid oxidation, as well as altered expression of mitochondrial DNA-encoded genes and proteins, and disturbed mitochondrial OXPHOS complex assembly. Furthermore, after glucose restriction, the MTIF3 knockout cells retained more triglycerides than control cells. This study demonstrates an adipocyte function-specific role of MTIF3, which originates in the maintenance of mitochondrial function, providing potential explanations for why MTIF3 genetic variation at rs67785913 is associated with body corpulence and response to weight loss interventions.

Data availability

All data generated or analyzed in this study are included in the figures and the source data files. Source data files are provided for Figures 3 and 4, and for Figure 3-figure supplement 1.

Article and author information

Author details

  1. Mi Huang

    Department of Clinical Sciences, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Coral

    Department of Clinical Sciences, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Hamidreza Ardalani

    Department of Clinical Sciences, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Spegel

    Department of Clinical Sciences, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Alham Saadat

    Metabolism Program, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Melina Claussnitzer

    Metabolism Program, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hindrik Mulder

    Department of Clinical Sciences, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6593-8417
  8. Paul Franks

    Department of Clinical Sciences, Lund University, Malmö, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Kalamajski

    Department of Clinical Sciences, Lund University, Malmö, Sweden
    For correspondence
    sebastian.kalamajski@med.lu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6600-9302

Funding

European Research Council (ERC-2015-CoG -681742 NASCENT)

  • Paul Franks

Vetenskapsrådet

  • Hindrik Mulder
  • Paul Franks

LUDC-IRC

  • Hindrik Mulder

China Scholarship Council (201708420158)

  • Mi Huang

The Albert Påhlsson Foundation

  • Sebastian Kalamajski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcus M Seldin, University of California, Irvine, United States

Publication history

  1. Received: October 12, 2022
  2. Preprint posted: October 17, 2022 (view preprint)
  3. Accepted: March 5, 2023
  4. Accepted Manuscript published: March 6, 2023 (version 1)
  5. Version of Record published: March 17, 2023 (version 2)

Copyright

© 2023, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 302
    Page views
  • 54
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mi Huang
  2. Daniel Coral
  3. Hamidreza Ardalani
  4. Peter Spegel
  5. Alham Saadat
  6. Melina Claussnitzer
  7. Hindrik Mulder
  8. Paul Franks
  9. Sebastian Kalamajski
(2023)
Identification of a weight loss-associated causal eQTL in MTIF3 and the effects of MTIF3 deficiency on human adipocyte function
eLife 12:e84168.
https://doi.org/10.7554/eLife.84168

Further reading

    1. Cell Biology
    Viral S Shah, Jue Hou ... Jayaraj Rajagopal
    Tools and Resources

    The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real-time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the simultaneous study of 3 or 4 cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explant in real-time. Furthermore, we find that this methodology for direct cell type specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of secretory and goblet cell associated antigen passages (SAPs and GAPs) enable luminal antigen sampling. Given that airway secretory cells can be stimulated to make mucous within hours, we suspect that both SAPs and GAPs are also used for luminal antigen sampling in the airway. This hypothesis is supported by our observation that secretory cells with airway SAPs are frequently juxtaposed to antigen presenting cells.

    1. Cell Biology
    Danielle B Buglak, Pauline Bougaran ... Victoria L Bautch
    Research Article

    Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.