Perception: In sync with the heart

People actively adjust how they acquire sensory information, such as tactile cues, based on how their bodily functions alter their senses.
  1. Aleksandra M Herman  Is a corresponding author
  1. Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland

Sit back and relax. Close your eyes. Can you feel your heart beating in your chest? What you are experiencing is your heart working in a cyclic manner. During the systolic phase, the heart contracts, ejecting blood into the vessels that lead out of it, and increasing the activity of pressure sensors called baroreceptors. During the diastolic phase, the heart expands, allowing blood to flow into it, while the baroreceptors remain quiescent.

Even though the whole cycle usually takes just under a second, a lot is happening during that time. With every heartbeat, the brain receives input about the strength and precise timing of each cardiac contraction – information that needs to be promptly processed and acted upon if necessary. In recent years, a lot of studies have focused on the internal state of our body and the way we process its subtle signals; and in how physiological fluctuations in our bodies (such as the cardiac cycle) can impact our cognition and behaviour.

Certain behaviours have been shown to occur in sync with internal bodily oscillations (Kunzendorf et al., 2019; Ohl et al., 2016). For example, when we look for something, we fixate our eyes more (i.e., sample new information) during diastole, and move our eyes more (to search new areas) during systole (Galvez-Pol et al., 2020). Moreover, the sensitivity of touch also varies between the two phases: people are less perceptive to touch during systole than during diastole (Al et al., 2020; Motyka et al., 2019). So far, it was unclear what behavioural benefits such synchronicity brings (Herman and Tsakiris, 2021). Now, in eLife, Alejandro Galvez-Pol, Pavandeep Virdee, Javier Villacampa and James Kilner of University College London and the University of the Balearic Islands report new insights on this matter (Galvez-Pol et al., 2022).

In a cleverly designed experiment, Galvez-Pol et al. used electrocardiography to record the cardiac activity of participants while they performed a simple tactile discrimination task. Without looking, the participants had to figure out whether the objects they touched had vertical or horizontal grooves. They found that touches initiated during systole were held for longer than touches initiated during diastole (Figure 1). This was particularly pronounced when it was difficult to discriminate the objects, indicating that people use prolonged touch to compensate for the reduced sensitivity during systole.

Schematic representation of the interplay between cardiac cycles and perception.

The heart beats in a cyclic manner. It contracts to actively push blood around the body (systolic phase, red, top centre) and relaxes to refill again (diastolic phase, blue, bottom centre). Using a tactile discrimination task, Galvez-Pol et al. show that the sensitivity of touch decreases during systole: therefore, to compensate, people hold their fingers longer over an object (red clock), especially when the task was more difficult. Conversely, people will hold their fingers on an object for a shorter time if they start touching it during diastole (blue clock).

Moreover, Galvez-Pol et al. found that the timing of touch also affected the duration of a cardiac cycle. When touch was initiated during systole, it increased the proportion of the cycle in diastole, which had previously been associated with the greatest tactile sensitivity. Thus, people adapt their behaviour in line with their perceptual needs; but their internal bodily cycles also adjust according to external demands to ensure a stable perception of the world around us.

Our bodies work in a rhythmic fashion – a fact that we typically pay little attention to in our daily lives. However, these internal rhythms have a much greater influence on our cognition than previously thought and can modulate how we perceive the environment around us. But there is still a lot to discover. Bodily signals may impact our perception in a relatively simple tactile discrimination task, but do they also affect more complex cognitive processes, such as decision-making? And are individuals, who are more attuned to subtle changes in their physiology, better able to adjust their behaviours to overcome cardiac-related effects? Answering these questions will allow us to better understand the complex interplay between the brain and the rest of the body and, ultimately, better understand ourselves.


Article and author information

Author details

  1. Aleksandra M Herman

    Aleksandra M Herman is in the Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3338-0543

Publication history

  1. Version of Record published: November 17, 2022 (version 1)


© 2022, Herman

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 618
    Page views
  • 64
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandra M Herman
Perception: In sync with the heart
eLife 11:e84298.
  1. Further reading

Further reading

    1. Neuroscience
    Reemy Ali Nasser, Yuval Harel, Shay Stern
    Research Article Updated

    Early-life experiences may promote stereotyped behavioral alterations that are dynamic across development time, but also behavioral responses that are variable among individuals, even when initially exposed to the same stimulus. Here, by utilizing longitudinal monitoring of Caenorhabditis elegans individuals throughout development we show that behavioral effects of early-life starvation are exposed during early and late developmental stages and buffered during intermediate stages of development. We further found that both dopamine and serotonin shape the discontinuous behavioral responses by opposite and temporally segregated functions across development time. While dopamine buffers behavioral responses during intermediate developmental stages, serotonin promotes behavioral sensitivity to stress during early and late stages. Interestingly, unsupervised analysis of individual biases across development uncovered multiple individuality dimensions that coexist within stressed and unstressed populations and further identified experience-dependent effects on variation within specific individuality dimensions. These results provide insight into the complex temporal regulation of behavioral plasticity across developmental timescales, structuring shared and unique individual responses to early-life experiences.

    1. Computational and Systems Biology
    2. Neuroscience
    Bo Shen, Kenway Louie, Paul W Glimcher
    Research Article

    Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.