Perception: In sync with the heart

People actively adjust how they acquire sensory information, such as tactile cues, based on how their bodily functions alter their senses.
  1. Aleksandra M Herman  Is a corresponding author
  1. Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland

Sit back and relax. Close your eyes. Can you feel your heart beating in your chest? What you are experiencing is your heart working in a cyclic manner. During the systolic phase, the heart contracts, ejecting blood into the vessels that lead out of it, and increasing the activity of pressure sensors called baroreceptors. During the diastolic phase, the heart expands, allowing blood to flow into it, while the baroreceptors remain quiescent.

Even though the whole cycle usually takes just under a second, a lot is happening during that time. With every heartbeat, the brain receives input about the strength and precise timing of each cardiac contraction – information that needs to be promptly processed and acted upon if necessary. In recent years, a lot of studies have focused on the internal state of our body and the way we process its subtle signals; and in how physiological fluctuations in our bodies (such as the cardiac cycle) can impact our cognition and behaviour.

Certain behaviours have been shown to occur in sync with internal bodily oscillations (Kunzendorf et al., 2019; Ohl et al., 2016). For example, when we look for something, we fixate our eyes more (i.e., sample new information) during diastole, and move our eyes more (to search new areas) during systole (Galvez-Pol et al., 2020). Moreover, the sensitivity of touch also varies between the two phases: people are less perceptive to touch during systole than during diastole (Al et al., 2020; Motyka et al., 2019). So far, it was unclear what behavioural benefits such synchronicity brings (Herman and Tsakiris, 2021). Now, in eLife, Alejandro Galvez-Pol, Pavandeep Virdee, Javier Villacampa and James Kilner of University College London and the University of the Balearic Islands report new insights on this matter (Galvez-Pol et al., 2022).

In a cleverly designed experiment, Galvez-Pol et al. used electrocardiography to record the cardiac activity of participants while they performed a simple tactile discrimination task. Without looking, the participants had to figure out whether the objects they touched had vertical or horizontal grooves. They found that touches initiated during systole were held for longer than touches initiated during diastole (Figure 1). This was particularly pronounced when it was difficult to discriminate the objects, indicating that people use prolonged touch to compensate for the reduced sensitivity during systole.

Schematic representation of the interplay between cardiac cycles and perception.

The heart beats in a cyclic manner. It contracts to actively push blood around the body (systolic phase, red, top centre) and relaxes to refill again (diastolic phase, blue, bottom centre). Using a tactile discrimination task, Galvez-Pol et al. show that the sensitivity of touch decreases during systole: therefore, to compensate, people hold their fingers longer over an object (red clock), especially when the task was more difficult. Conversely, people will hold their fingers on an object for a shorter time if they start touching it during diastole (blue clock).

Moreover, Galvez-Pol et al. found that the timing of touch also affected the duration of a cardiac cycle. When touch was initiated during systole, it increased the proportion of the cycle in diastole, which had previously been associated with the greatest tactile sensitivity. Thus, people adapt their behaviour in line with their perceptual needs; but their internal bodily cycles also adjust according to external demands to ensure a stable perception of the world around us.

Our bodies work in a rhythmic fashion – a fact that we typically pay little attention to in our daily lives. However, these internal rhythms have a much greater influence on our cognition than previously thought and can modulate how we perceive the environment around us. But there is still a lot to discover. Bodily signals may impact our perception in a relatively simple tactile discrimination task, but do they also affect more complex cognitive processes, such as decision-making? And are individuals, who are more attuned to subtle changes in their physiology, better able to adjust their behaviours to overcome cardiac-related effects? Answering these questions will allow us to better understand the complex interplay between the brain and the rest of the body and, ultimately, better understand ourselves.

References

Article and author information

Author details

  1. Aleksandra M Herman

    Aleksandra M Herman is in the Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

    For correspondence
    a.herman@nencki.edu.pl
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3338-0543

Publication history

  1. Version of Record published:

Copyright

© 2022, Herman

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 808
    views
  • 80
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandra M Herman
(2022)
Perception: In sync with the heart
eLife 11:e84298.
https://doi.org/10.7554/eLife.84298
  1. Further reading

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.