Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen specific tumor cell killing by cytotoxic T cells

Abstract

Cytotoxic CD8+ T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon‑γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.

Data availability

All data generated or analyzed are included in the manuscript. Source data files are provided for figure 2 and figure 3

Article and author information

Author details

  1. Ann-Kathrin Herzfeldt

    Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Ann-Kathrin Herzfeldt, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
  2. Marta Puig Gamez

    Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Marta Puig Gamez, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
  3. Eva Martin

    Department of Drug Discovery Sciences, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Eva Martin, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
  4. Lukasz Miloslaw Boryn

    Ardigen SA, Kraków, Poland
    Competing interests
    Lukasz Miloslaw Boryn, was an Ardigen S.A. employee. The funder provided support in the form of salaries for the authors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8091-1071
  5. Praveen Baskaran

    Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Praveen Baskaran, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2275-3516
  6. Heinrich J Huber

    Drug Discovery Sciences, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Heinrich J Huber, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4454-2971
  7. Michael Schuler

    Dept of Drug Discovery Services, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Michael Schuler, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
  8. John E Park

    Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim, Biberach an der Riss, Germany
    For correspondence
    john.park@boehringer-ingelheim.com
    Competing interests
    John E Park, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5674-6026
  9. Kim Lee Swee

    Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Kim Lee Swee, was an employee at this time of Boehringer Ingelheim Pharma GmbH Co. KG. The author has noother relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..

Funding

Boehringer Ingelheim (none)

  • Ann-Kathrin Herzfeldt
  • Marta Puig Gamez
  • Eva Martin
  • Lukasz Miloslaw Boryn
  • Praveen Baskaran
  • Heinrich J Huber
  • Michael Schuler
  • John E Park
  • Kim Lee Swee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Herzfeldt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,193
    views
  • 202
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ann-Kathrin Herzfeldt
  2. Marta Puig Gamez
  3. Eva Martin
  4. Lukasz Miloslaw Boryn
  5. Praveen Baskaran
  6. Heinrich J Huber
  7. Michael Schuler
  8. John E Park
  9. Kim Lee Swee
(2023)
Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen specific tumor cell killing by cytotoxic T cells
eLife 12:e84314.
https://doi.org/10.7554/eLife.84314

Share this article

https://doi.org/10.7554/eLife.84314

Further reading

    1. Cancer Biology
    Yumin Fu, Xinyu Guo ... Lianxin Liu
    Review Article

    Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.

    1. Cancer Biology
    Yang Liu, Yi Jiang ... Xi Gu
    Research Article

    Distant metastasis is the major cause of death in patients with breast cancer. Epithelial–mesenchymal transition (EMT) contributes to breast cancer metastasis. Regulator of G protein-signaling (RGS) proteins modulates metastasis in various cancers. This study identified a novel role for RGS10 in EMT and metastasis in breast cancer. RGS10 protein levels were significantly lower in breast cancer tissues compared to normal breast tissues, and deficiency in RGS10 protein predicted a worse prognosis in patients with breast cancer. RGS10 protein levels were lower in the highly aggressive cell line MDA-MB-231 than in the poorly aggressive, less invasive cell lines MCF7 and SKBR3. Silencing RGS10 in SKBR3 cells enhanced EMT and caused SKBR3 cell migration and invasion. The ability of RGS10 to suppress EMT and metastasis in breast cancer was dependent on lipocalin-2 and MIR539-5p. These findings identify RGS10 as a tumor suppressor, prognostic biomarker, and potential therapeutic target for breast cancer.