Inconsistencies between human and macaque lesion data can be resolved with a stimulus-computable model of the ventral visual stream

  1. Tyler Bonnen  Is a corresponding author
  2. Mark AG Eldridge  Is a corresponding author
  1. Stanford University, United States
  2. National Institute of Mental Health, United States

Abstract

Decades of neuroscientific research has sought to understand medial temporal lobe (MTL) involvement in perception. Apparent inconsistencies in the literature have led to competing interpretations of the available evidence; critically, findings from human participants with naturally occurring MTL damage appear to be inconsistent with findings from monkeys with surgical lesions. Here we leverage a 'stimulus-computable' proxy for the primate ventral visual stream (VVS), which enables us to formally evaluate perceptual demands across stimulus sets, experiments, and species. With this approach, we analyze a series of experiments administered to monkeys with surgical, bilateral damage to perirhinal cortex (PRC), a MTL structure implicated in visual object perception. Across experiments, PRC-lesioned subjects showed no impairment on perceptual tasks; this originally led us (Eldridge et al., 2018) to conclude that PRC is not involved in perception. Here we find that a 'VVS-like' model predicts both PRC-intact and -lesioned choice behaviors, suggesting that a linear readout of the VVS should be sufficient for performance on these tasks. Evaluating these data alongside findings from human experiments, we suggest that results from Eldridge et al., 2018 alone can not be used as evidence against PRC involvement in perception. These data suggest that the experimental findings from human and non-human primate literature are consistent, and apparent discrepancies between species was due to reliance on informal accounts of perceptual processing.

Data availability

All scripts used for analysis and visualization can be accessed via github at https://github.com/tzler/eldridge_reanalysisAll stimuli and behavioral data used in these analyses can be downloaded via Dryad

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tyler Bonnen

    Stanford University, Stanford, United States
    For correspondence
    bonnen@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8709-1651
  2. Mark AG Eldridge

    National Institute of Mental Health, Bethesda, United States
    For correspondence
    mark.eldridge@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4292-6832

Funding

National Institute of Mental Health (ZIAMH002032)

  • Tyler Bonnen

National Institute of Neurological Disorders and Stroke (F99NS125816)

  • Tyler Bonnen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures conformed to the Institute of Medicine Guide for the Care and Use of Laboratory Animals and were performed under an Animal Study Protocol approved by the Animal Care and Use Committee of the National Institute of Mental Health, covered by project number: MH002032.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 700
    views
  • 63
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tyler Bonnen
  2. Mark AG Eldridge
(2023)
Inconsistencies between human and macaque lesion data can be resolved with a stimulus-computable model of the ventral visual stream
eLife 12:e84357.
https://doi.org/10.7554/eLife.84357

Share this article

https://doi.org/10.7554/eLife.84357

Further reading

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.