Inconsistencies between human and macaque lesion data can be resolved with a stimulus-computable model of the ventral visual stream

  1. Tyler Bonnen  Is a corresponding author
  2. Mark AG Eldridge  Is a corresponding author
  1. Stanford University, United States
  2. National Institute of Mental Health, United States

Abstract

Decades of neuroscientific research has sought to understand medial temporal lobe (MTL) involvement in perception. Apparent inconsistencies in the literature have led to competing interpretations of the available evidence; critically, findings from human participants with naturally occurring MTL damage appear to be inconsistent with findings from monkeys with surgical lesions. Here we leverage a 'stimulus-computable' proxy for the primate ventral visual stream (VVS), which enables us to formally evaluate perceptual demands across stimulus sets, experiments, and species. With this approach, we analyze a series of experiments administered to monkeys with surgical, bilateral damage to perirhinal cortex (PRC), a MTL structure implicated in visual object perception. Across experiments, PRC-lesioned subjects showed no impairment on perceptual tasks; this originally led us (Eldridge et al., 2018) to conclude that PRC is not involved in perception. Here we find that a 'VVS-like' model predicts both PRC-intact and -lesioned choice behaviors, suggesting that a linear readout of the VVS should be sufficient for performance on these tasks. Evaluating these data alongside findings from human experiments, we suggest that results from Eldridge et al., 2018 alone can not be used as evidence against PRC involvement in perception. These data suggest that the experimental findings from human and non-human primate literature are consistent, and apparent discrepancies between species was due to reliance on informal accounts of perceptual processing.

Data availability

All scripts used for analysis and visualization can be accessed via github at https://github.com/tzler/eldridge_reanalysisAll stimuli and behavioral data used in these analyses can be downloaded via Dryad

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tyler Bonnen

    Stanford University, Stanford, United States
    For correspondence
    bonnen@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8709-1651
  2. Mark AG Eldridge

    National Institute of Mental Health, Bethesda, United States
    For correspondence
    mark.eldridge@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4292-6832

Funding

National Institute of Mental Health (ZIAMH002032)

  • Tyler Bonnen

National Institute of Neurological Disorders and Stroke (F99NS125816)

  • Tyler Bonnen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures conformed to the Institute of Medicine Guide for the Care and Use of Laboratory Animals and were performed under an Animal Study Protocol approved by the Animal Care and Use Committee of the National Institute of Mental Health, covered by project number: MH002032.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 692
    views
  • 62
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tyler Bonnen
  2. Mark AG Eldridge
(2023)
Inconsistencies between human and macaque lesion data can be resolved with a stimulus-computable model of the ventral visual stream
eLife 12:e84357.
https://doi.org/10.7554/eLife.84357

Share this article

https://doi.org/10.7554/eLife.84357

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Mohsen Alavash
    Insight

    Combining electrophysiological, anatomical and functional brain maps reveals networks of beta neural activity that align with dopamine uptake.