The CD73 immune checkpoint promotes tumor cell metabolic fitness

  1. David Allard
  2. Isabelle Cousineau
  3. Eric H Ma
  4. Bertrand Allard
  5. Yacine Bareche
  6. Hubert Fleury
  7. John Stagg  Is a corresponding author
  1. Centre Hospitalier de l'Université de Montréal, Canada
  2. McGill University, Canada
  3. Université de Montréal, Canada

Abstract

CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. David Allard

    Centre Hospitalier de l'Université de Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
  2. Isabelle Cousineau

    Centre Hospitalier de l'Université de Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
  3. Eric H Ma

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  4. Bertrand Allard

    Centre Hospitalier de l'Université de Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
  5. Yacine Bareche

    Centre Hospitalier de l'Université de Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
  6. Hubert Fleury

    Centre Hospitalier de l'Université de Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
  7. John Stagg

    Faculté de Pharmacie, Université de Montréal, Montreal, Canada
    For correspondence
    john.stagg@umontreal.ca
    Competing interests
    John Stagg, is permanent member of the Scientific Advisory Board and owns stocks of Surface Oncology, is member of the Scientific Advisory Board of Tarus Therapeutics, and is a member of the Scientific Advisory Board of Domain Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7833-4228

Funding

Canadian Institutes of Health Research

  • John Stagg

Fonds de recherche du Québec

  • John Stagg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lynne-Marie Postovit, University of Alberta, Canada

Ethics

Animal experimentation: All the experimental procedures were authorized, and all animals were handled according to an approved Institutional Animal Care and Use Committee (IACUC) protocol (#C20010JSs) of the Centre de Recherche du Centre Hospitalier de l'Université de Montréal.

Version history

  1. Received: October 26, 2022
  2. Preprint posted: December 2, 2022 (view preprint)
  3. Accepted: May 31, 2023
  4. Accepted Manuscript published: June 1, 2023 (version 1)
  5. Version of Record published: June 8, 2023 (version 2)
  6. Version of Record updated: October 6, 2023 (version 3)

Copyright

© 2023, Allard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,616
    views
  • 212
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Allard
  2. Isabelle Cousineau
  3. Eric H Ma
  4. Bertrand Allard
  5. Yacine Bareche
  6. Hubert Fleury
  7. John Stagg
(2023)
The CD73 immune checkpoint promotes tumor cell metabolic fitness
eLife 12:e84508.
https://doi.org/10.7554/eLife.84508

Share this article

https://doi.org/10.7554/eLife.84508

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article Updated

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.