Bayesian analysis of phase data in EEG and MEG

  1. Sydney Dimmock  Is a corresponding author
  2. Cian O'Donnell
  3. Conor J Houghton
  1. University of Bristol, United Kingdom
  2. University of Ulster, United Kingdom

Abstract

Electroencephalography and magnetoencephalography recordings are non-invasive and temporally precise, making them invaluable tools in the investigation of neural responses in humans. However, these recordings are noisy, both because the neuronal electrodynamics involved produces a muffled signal and because the neuronal processes of interest compete with numerous other processes, from blinking to day-dreaming. One fruitful response to this noisiness has been to use stimuli with a specific frequency and to look for the signal of interest in the response at that frequency. Typically this signal involves measuring the coherence of response phase: here a Bayesian approach to measuring phase coherence is described. This Bayesian approach is illustrated using an example from neurolinguistics and is more descriptive and more data-efficient than the traditional statistical approaches.

Data availability

This manuscript is a computational study, so no data have been generated. All modelling code for this study is available from the GitHub link provided in appendix 2. The statistical learning dataset used as a case study in this paper is not publicly available.

The following previously published data sets were used

Article and author information

Author details

  1. Sydney Dimmock

    Department of Computer Science, University of Bristol, Bristol, United Kingdom
    For correspondence
    sd14814@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0163-2048
  2. Cian O'Donnell

    School of Computing, Engineering abd Intelligent Systems, University of Ulster, Londonderry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Conor J Houghton

    Department of Computer Science, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5017-9473

Funding

Leverhulme Trust (RF-2021-533)

  • Conor J Houghton

Medical Research Council (MR/S026630/1)

  • Cian O'Donnell

Engineering and Physical Sciences Research Council (EP/R513179/1)

  • Sydney Dimmock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrea E Martin, Max Planck Institute for Psycholinguistics, Netherlands

Version history

  1. Preprint posted: October 17, 2022 (view preprint)
  2. Received: October 31, 2022
  3. Accepted: September 11, 2023
  4. Accepted Manuscript published: September 12, 2023 (version 1)
  5. Accepted Manuscript updated: September 20, 2023 (version 2)
  6. Version of Record published: October 20, 2023 (version 3)

Copyright

© 2023, Dimmock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 753
    Page views
  • 208
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sydney Dimmock
  2. Cian O'Donnell
  3. Conor J Houghton
(2023)
Bayesian analysis of phase data in EEG and MEG
eLife 12:e84602.
https://doi.org/10.7554/eLife.84602

Further reading

    1. Neuroscience
    Louise Schenberg, Aïda Palou ... Mathieu Beraneck
    Research Article

    The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.

    1. Neuroscience
    Mika Rubinov
    Review Article

    Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.