Bayesian analysis of phase data in EEG and MEG

  1. Sydney Dimmock  Is a corresponding author
  2. Cian O'Donnell
  3. Conor J Houghton
  1. University of Bristol, United Kingdom
  2. University of Ulster, United Kingdom

Abstract

Electroencephalography and magnetoencephalography recordings are non-invasive and temporally precise, making them invaluable tools in the investigation of neural responses in humans. However, these recordings are noisy, both because the neuronal electrodynamics involved produces a muffled signal and because the neuronal processes of interest compete with numerous other processes, from blinking to day-dreaming. One fruitful response to this noisiness has been to use stimuli with a specific frequency and to look for the signal of interest in the response at that frequency. Typically this signal involves measuring the coherence of response phase: here a Bayesian approach to measuring phase coherence is described. This Bayesian approach is illustrated using an example from neurolinguistics and is more descriptive and more data-efficient than the traditional statistical approaches.

Data availability

This manuscript is a computational study, so no data have been generated. All modelling code for this study is available from the GitHub link provided in appendix 2. The statistical learning dataset used as a case study in this paper is not publicly available.

The following previously published data sets were used

Article and author information

Author details

  1. Sydney Dimmock

    Department of Computer Science, University of Bristol, Bristol, United Kingdom
    For correspondence
    sd14814@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0163-2048
  2. Cian O'Donnell

    School of Computing, Engineering abd Intelligent Systems, University of Ulster, Londonderry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Conor J Houghton

    Department of Computer Science, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5017-9473

Funding

Leverhulme Trust (RF-2021-533)

  • Conor J Houghton

Medical Research Council (MR/S026630/1)

  • Cian O'Donnell

Engineering and Physical Sciences Research Council (EP/R513179/1)

  • Sydney Dimmock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Dimmock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,227
    views
  • 261
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sydney Dimmock
  2. Cian O'Donnell
  3. Conor J Houghton
(2023)
Bayesian analysis of phase data in EEG and MEG
eLife 12:e84602.
https://doi.org/10.7554/eLife.84602

Share this article

https://doi.org/10.7554/eLife.84602

Further reading

    1. Neuroscience
    Proloy Das, Mingjian He, Patrick L Purdon
    Tools and Resources

    Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters – the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations – all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

    1. Neuroscience
    Sihan Yang, Anastasia Kiyonaga
    Insight

    A neural signature of serial dependence has been found, which mirrors the attractive bias of visual information seen in behavioral experiments.