Cancer: Examining the cooperation between extrachromosomal DNA circles
Cells often need to modulate the production of certain proteins to adjust to their ever-changing environment. This is usually achieved by altering the amount of messenger RNAs synthetized from the corresponding genes. Two factors impact the transcription yield of a gene: the number of active copies of this sequence in the genome, and the rate at which each of them is transcribed.
Boosting the production of a protein is usually achieved by increasing transcription rates, but special cases can involve directly creating more copies of the associated gene (Stark and Wahl, 1984). This phenomenon was first identified in amphibian eggs, where it helps cells to produce the elements required for protein synthesis (see Tobler, 1975 for review). In human cells, however, gene amplification is most commonly associated with boosting the expression of cancer-driving genes (Tanaka and Watanabe, 2020). These additional ‘oncogene’ copies can be arranged in tandem in a specific region of a linear chromosome, or they can be contained inside small circles of extrachromosomal DNA (ecDNA) formerly known as double-minute chromosomes (Verhaak et al., 2019; Cox et al., 1965; Figure 1A). A recent study by Hung et al. has reported that oncogenic ecDNAs frequently come together to form hubs of 10 to 100 ecDNA circles; inside these clusters, intermolecular interactions take place that boost oncogene expression (Hung et al., 2021). Now, in eLife, Steven Pollard, Wendy Bickmore and colleagues at the University of Edinburgh — including Karin Purshouse as first author — report new results which contradict these findings (Purshouse et al., 2022).
The team focused on malignant cells from an aggressive type of brain cancer known as glioblastoma; these frequently contain ecDNA circles carrying one or multiple oncogenes. Using super-resolution imaging, Purshouse et al. were able to determine the location of individual ecDNA circles within the nucleus, and how frequently two ecDNAs were found within a given distance. Comparing these numbers with what would be expected if the circles were randomly distributed in the nucleus allowed the team to assess whether ecDNAs form clusters more frequently than anticipated. When analyzing ecDNAs carrying the same oncogene, they found no evidence of clustering of ecDNAs within 200 nm – the distance that corresponds to the estimated diameter of ecDNA hubs.
However, due to the limitation of optical resolution, this approach cannot detect tighter clusters consisting of ecDNAs that are closer than 200nm. To overcome this challenge, Purshouse et al. used another line of glioblastoma cells that carry two distinct types of ecDNAs, which were imaged independently using different probes. This approach makes it possible to spot smaller hubs that bring together different ecDNA ‘species’, yet it also did not provide evidence that ecDNAs cluster in glioblastoma cells.
The team then focused on how ecDNA circles were being transcribed. First, they examined whether oncogenic ecDNAs may be clustering with ‘transcriptional hubs’ that physically bring together various elements of the transcription machinery. However, no spatial correlation was found between ecDNAs and these hubs. Next, they compared how chromosomal and ecDNA copies of the same oncogene were being transcribed. They started by imaging nascent RNA transcripts near individual ecDNA circles, gathering information that allowed them to assess the fraction of ecDNAs that are being actively transcribed at any given time. These analyses captured ‘immature’ RNA transcripts as they were being synthesized, and they showed that ecDNA and chromosomal copies were transcribed at a similar frequency.
Finally, the team switched their focus to mature messenger RNAs. They estimated the fraction of messenger RNAs transcribed from either the ecDNA or the chromosomal copy of an oncogene, using slight differences in the sequences between the two versions. After normalizing for ecDNA and chromosomal copy numbers, they established that an individual sequence, whether chromosomal or extrachromosomal, would produce a similar amount of mature messenger RNAs. Chromosomal DNA and ecDNA therefore appear to be transcribed with a similar efficiency. Taken together, these findings suggest that the transcriptional yield of amplified ecDNAs is primarily determined by the number of ecDNA circles, rather than the cooperative transcription of clustered ecDNAs.
What could explain the discrepancy between these observations and the results reported by Hung et al. (Figure 1B)? Purshouse et al. suggested that both sets of conclusions may in fact be true, but under different circumstances. As these studies relied on a small number of cell lines derived from different types of tumors, diverging results could reflect variations in the size, gene composition or copy number of ecDNAs across cancers. In addition, ecDNAs are highly dynamic; they can recombine, reintegrate within a chromosome or undergo other types of molecular rearrangements which may all alter transcription kinetics (Shoshani et al., 2021; Rosswog et al., 2021). Further studies are now needed to explore the way that ecDNA transcription changes across a wide range of cancers and during disease progression.
References
-
Gene amplificationAnnual Review of Biochemistry 53:447–491.https://doi.org/10.1146/annurev.bi.53.070184.002311
-
BookOccurrence and developmental significance of gene amplificationIn: Weber Rudolf, editors. Biochemistry of Animal Development. New York: Academic Press. pp. 91–143.https://doi.org/10.1016/B978-0-12-740603-9.50009-7
-
Extrachromosomal oncogene amplification in tumour pathogenesis and evolutionNature Reviews. Cancer 19:283–288.https://doi.org/10.1038/s41568-019-0128-6
Article and author information
Author details
Publication history
Copyright
© 2022, Zhang and Zhang
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 662
- views
-
- 67
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Chromosomes and Gene Expression
During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.
-
- Chromosomes and Gene Expression
Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II (RNAPII). We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter-bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation, and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.