A computational method for predicting the most likely evolutionary trajectories in the step-wise accumulation of resistance mutations

  1. Ruth Charlotte Eccleston  Is a corresponding author
  2. Emilia Manko
  3. Susana Campino
  4. Taane G Clark
  5. Nicholas Furnham
  1. London School of Hygiene & Tropical Medicine, United Kingdom

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received
  5. Preprint posted

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruth Charlotte Eccleston
  2. Emilia Manko
  3. Susana Campino
  4. Taane G Clark
  5. Nicholas Furnham
(2023)
A computational method for predicting the most likely evolutionary trajectories in the step-wise accumulation of resistance mutations
eLife 12:e84756.
https://doi.org/10.7554/eLife.84756

Share this article

https://doi.org/10.7554/eLife.84756