Hsp47 promotes biogenesis of multi-subunit neuroreceptors in the endoplasmic reticulum

  1. Ya-Juan Wang
  2. Xiao-Jing Di
  3. Pei-Pei Zhang
  4. Xi Chen
  5. Marnie P Williams
  6. Dong-Yun Han
  7. Raad Nashmi
  8. Brandon J Henderson
  9. Fraser J Moss
  10. Ting-Wei Mu  Is a corresponding author
  1. Case Western Reserve University, United States
  2. University of Victoria, Canada
  3. Marshall University, United States

Abstract

Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

Data availability

This paper does not report original code. All source data are available in this paper and supplementary information.

Article and author information

Author details

  1. Ya-Juan Wang

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-Jing Di

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pei-Pei Zhang

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xi Chen

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marnie P Williams

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dong-Yun Han

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Raad Nashmi

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Brandon J Henderson

    Department of Biomedical Sciences, Marshall University, Huntington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Fraser J Moss

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8519-6991
  10. Ting-Wei Mu

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    For correspondence
    tingwei.mu@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6419-9296

Funding

National Institute of Neurological Disorders and Stroke (R01NS105789)

  • Ting-Wei Mu

National Institute of Neurological Disorders and Stroke (R01NS117176)

  • Ting-Wei Mu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This animal study (Protocol #: 2018-0017) was approved by the Institutional Animal Care and Use Committees (IACUC) at Case Western Reserve University and was carried out in agreement with the recommendation of the American Veterinary Medical Association Panel on Euthanasia. Animals were maintained in groups. The ARRIVE guidelines have been followed.

Copyright

© 2024, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 652
    views
  • 126
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ya-Juan Wang
  2. Xiao-Jing Di
  3. Pei-Pei Zhang
  4. Xi Chen
  5. Marnie P Williams
  6. Dong-Yun Han
  7. Raad Nashmi
  8. Brandon J Henderson
  9. Fraser J Moss
  10. Ting-Wei Mu
(2024)
Hsp47 promotes biogenesis of multi-subunit neuroreceptors in the endoplasmic reticulum
eLife 13:e84798.
https://doi.org/10.7554/eLife.84798

Share this article

https://doi.org/10.7554/eLife.84798

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.