Nitrogenase resurrection and the evolution of a singular enzymatic mechanism

  1. Amanda K Garcia
  2. Derek F Harris
  3. Alex J Rivier
  4. Brooke M Carruthers
  5. Azul Pinochet-Barros
  6. Lance Seefeldt
  7. Betül Kaçar  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Utah State University, United States

Abstract

The planetary biosphere is powered by a suite of key metabolic innovations that emerged early in the history of life. However, it is unknown whether life has always followed the same set of strategies for performing these critical tasks. Today, microbes access atmospheric sources of bioessential nitrogen through the activities of just one family of enzymes, nitrogenases. Here, we show that the only dinitrogen reduction mechanism known to date is an ancient feature conserved from nitrogenase ancestors. We designed a paleomolecular engineering approach wherein ancestral nitrogenase genes were phylogenetically reconstructed and inserted into the genome of the diazotrophic bacterial model, Azotobacter vinelandii, enabling an integrated assessment of both in vivo functionality and purified nitrogenase biochemistry. Nitrogenase ancestors are active and robust to variable incorporation of one or more ancestral protein subunits. Further, we find that all ancestors exhibit the reversible enzymatic mechanism for dinitrogen reduction, specifically evidenced by hydrogen inhibition, that is also exhibited by extant A. vinelandii nitrogenase isozymes. Our results suggest that life may have been constrained in its sampling of protein sequence space to catalyze one of the most energetically challenging biochemical reactions in nature. The experimental framework established here is essential for probing how nitrogenase functionality has been shaped within a dynamic, cellular context to sustain a globally consequential metabolism.

Data availability

MATERIALS AVAILABILITYMaterials including bacterial strains and plasmids are available to the scientific community upon request.DATA AND CODE AVAILABILITYPhylogenetic data, including sequence alignments and phylogenetic trees, and the script for ancestral gene codon-optimization are publicly available at https://github.com/kacarlab/garcia_nif2023. All other data are included as source data and supplementary files.

Article and author information

Author details

  1. Amanda K Garcia

    Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Derek F Harris

    Department of Chemistry and Biochemistry, Utah State University, Logan, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex J Rivier

    Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brooke M Carruthers

    Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Azul Pinochet-Barros

    Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lance Seefeldt

    Department of Chemistry and Biochemistry, Utah State University, Logan, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6457-9504
  7. Betül Kaçar

    Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    bkacar@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0482-2357

Funding

National Aeronautics and Space Administration (19- ICAR19_2-0007)

  • Amanda K Garcia
  • Derek F Harris
  • Alex J Rivier
  • Brooke M Carruthers
  • Azul Pinochet-Barros
  • Lance Seefeldt
  • Betül Kaçar

National Aeronautics and Space Administration (Postdoctoral Fellowship)

  • Amanda K Garcia

University of Wisconsin-Madison

  • Betül Kaçar

Arizona Space Grant Consortium

  • Brooke M Carruthers

National Aeronautics and Space Administration (80NSSC19K1617)

  • Betül Kaçar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Garcia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,959
    views
  • 353
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda K Garcia
  2. Derek F Harris
  3. Alex J Rivier
  4. Brooke M Carruthers
  5. Azul Pinochet-Barros
  6. Lance Seefeldt
  7. Betül Kaçar
(2023)
Nitrogenase resurrection and the evolution of a singular enzymatic mechanism
eLife 12:e85003.
https://doi.org/10.7554/eLife.85003

Share this article

https://doi.org/10.7554/eLife.85003

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.