Fluorescein-based sensors to purify human a-cells for functional and transcriptomic analyses

Abstract

Pancreatic a-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human a-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality a-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live a-cells from dissociated human islet cells with ~ 95% purity. The a-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form a-pseudoislets. The a-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key a-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in a-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary a-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.

Data availability

RNA-seq data have been deposited under accession code GSE199412. Further information and requests for resources and reagents should be directed to the corresponding author.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sevim Kahraman

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    Sevim Kahraman, S.K. is an employee of Boehringer Ingelheim Pharmaceuticals, Inc..
  2. Kimitaka Shibue

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  3. Dario F De Jesus

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  4. Hyunki Kim

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  5. Jiang Hu

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  6. Debasish Manna

    Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. Bridget K Wagner

    Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Amit Choudhary

    Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Rohit N Kulkarni

    Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    For correspondence
    rohit.kulkarni@joslin.harvard.edu
    Competing interests
    Rohit N Kulkarni, is on the Scientific Advisory Board of Novo Nordisk, Biomea and Inversago Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-6119

Funding

National Institutes of Health (U01 DK123717)

  • Bridget K Wagner
  • Rohit N Kulkarni

National Institutes of Health (UC4 DK116255)

  • Bridget K Wagner
  • Amit Choudhary
  • Rohit N Kulkarni

National Institutes of Health (R01 067536)

  • Rohit N Kulkarni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Kahraman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,385
    views
  • 268
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sevim Kahraman
  2. Kimitaka Shibue
  3. Dario F De Jesus
  4. Hyunki Kim
  5. Jiang Hu
  6. Debasish Manna
  7. Bridget K Wagner
  8. Amit Choudhary
  9. Rohit N Kulkarni
(2023)
Fluorescein-based sensors to purify human a-cells for functional and transcriptomic analyses
eLife 12:e85056.
https://doi.org/10.7554/eLife.85056

Share this article

https://doi.org/10.7554/eLife.85056

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.