T Cells: Ready and waiting to go

Some T cells that have been activated by a herpesvirus can also respond to SARS-CoV-2, even if the original herpesvirus infection happened before the COVID-19 pandemic.
  1. Laura Rivino
  2. Linda Wooldridge  Is a corresponding author
  1. School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, United Kingdom
  2. Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, United Kingdom

Cells called T cells play an important role in protecting the body against infection by removing pathogens that may cause harm. Two major types of T cell are involved in the response to a viral infection. Both become activated when their receptors recognize short peptides from viral proteins called ‘epitopes’: CD8 T cells directly attack infected cells, whereas CD4 T cells help other immune cells (called B cells) to produce antibodies. Once the infection has been eliminated, some of these CD8 and CD4 T cells survive in the body as long-lived memory T cells which can immediately respond if the virus invades again.

Previous studies found that some blood samples taken before the COVID-19 pandemic already contained T cells that could recognize the SARS-CoV-2 virus (Grifoni et al., 2020; Le Bert et al., 2020). However, researchers still do not fully understand how these T cells arose, or how they impact immunity and disease outcomes for COVID-19 patients.

One possibility is that these pre-existing T cells arose due to a phenomenon called heterologous immunity (Welsh et al., 2010). This is when CD4 and CD8 T cells activated by a specific pathogen ‘cross-react’ and respond to epitopes from a different virus (Mason, 1998). It was previously thought that coronaviruses already circulating in the population before the pandemic were responsible for the existence of some T cells that could recognise SARS-CoV-2 (Grifoni et al., 2020; Swadling et al., 2022). Now, in eLife, Cilia Pothast (Leiden University Medical Center), Mirjam Heemskerk (also at Leiden) and colleagues report that another group of viruses may have also been involved (Pothast et al., 2022).

The team hypothesised that some of the T cells specific to SARS-CoV-2 had been activated by a herpesvirus called human cytomegalovirus (HCMV). This pathogen is highly prevalent in the population and has also been linked to changes in the severity of COVID-19 symptoms (Alanio et al., 2022). To investigate, they stimulated pre-pandemic blood samples with different segments of SARS-CoV-2 proteins. This led them to discover a population of ‘cross-reactive’ CD4 and CD8 T cells that can recognize epitopes from both SARS-CoV-2 and HCMV (Figure 1).

Infection with human cytomegalovirus (HCMV) can stimulate T cells that can recognise SARS-CoV-2.

When individuals are infected with HCMV (virus shown in pink), the population of T cells that can detect this virus expands (T cells shown here in purple). Cross-reactivity is a well-known feature of the immune response. Through this process, HCMV infection can activate T cells (shown here in green) that can recognise both HCMV and another pathogen – including the SARS-CoV-2 virus, even if the HCMV infection happened before the COVID-19 pandemic. These cross-reactive T cells may be able to contribute to the immunity of an individual to SARS-CoV-2, as well as to how COVID-19 affects their body.

Image credit: Created with BioRender.com.

Pothast et al. found that this cross-reactivity was due to a T cell receptor that is expressed in multiple individuals. However, there are very few similarities between the amino acid sequences of the SARS-CoV-2 and the HCMV epitopes, bringing into question how this T cell receptor can detect both viruses. It may be possible to explain the molecular basis for this observation by solving crystal structures of this T cell receptor in complex with either the presented HCMV or SARS-CoV-2 epitopes.

Further experiments then revealed that the cross-reactive T cells limit the replication of SARS-CoV-2 in vitro when the virus is present at low levels. However, the cross-reactive T cells did not appear to have an activated phenotype in patients with severe COVID-19. This might be because individuals included in this study were over 60 years of age, and HCMV-specific T cells do not work as well as people get older (Ouyang et al., 2004).

It has been suggested that heterologous immunity may play a beneficial role in protective immunity (Welsh et al., 2010). This is consistent with a recent study showing that T cells which cross-react with SARS-CoV-2 are associated with abortive infections (when the virus fails to spread to other cells) and asymptomatic cases of COVID-19 (Swadling et al., 2022). These pre-existing T cells may also enhance a person’s response to vaccines (Loyal et al., 2021). However, heterologous immunity is a double-edged sword, as it can also increase the severity of some viral infections. For example, in dengue infections, cross-reactive antibodies and T cells can result in an immune response that is harmful to the body (Welsh et al., 2010; Screaton et al., 2015).

Further studies are needed to establish whether other pathogens (including bacteria) can stimulate T cells capable of recognising epitopes from SARS-CoV-2. In addition, studies with larger cohorts of vaccinated individuals and patients with mild or severe COVID-19 are required to define the role that these cross-reactive T cells play in protective immunity, in response to vaccination, and in disease pathology.

References

Article and author information

Author details

  1. Laura Rivino

    Laura Rivino is in the School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6213-9794
  2. Linda Wooldridge

    Linda Wooldridge is in the Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom

    For correspondence
    Linda.Wooldridge@bristol.ac.uk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6213-347X

Publication history

  1. Version of Record published: January 6, 2023 (version 1)

Copyright

© 2023, Rivino and Wooldridge

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 794
    views
  • 69
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Rivino
  2. Linda Wooldridge
(2023)
T Cells: Ready and waiting to go
eLife 12:e85080.
https://doi.org/10.7554/eLife.85080

Further reading

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.