A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity

  1. Barbara Bravi  Is a corresponding author
  2. Andrea Di Gioacchino
  3. Jorge Fernandez-de-Cossio-Diaz
  4. Aleksandra M Walczak
  5. Thierry Mora
  6. Simona Cocco
  7. Rémi Monasson
  1. Imperial College London, United Kingdom
  2. École Normale Supérieure - PSL, France

Abstract

Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen's probability of triggering a response, and on the other hand the T-cell receptor's ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. The data used are downloaded from public databases. The pre-processed data, the results of the analysis, the codes to train and evaluate the models as well as the trained models are all available at the github page https://github.com/bravib/diffRBM_immunogenicity_TCRspecificity.

Article and author information

Author details

  1. Barbara Bravi

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    b.bravi21@imperial.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4860-7584
  2. Andrea Di Gioacchino

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6085-7589
  3. Jorge Fernandez-de-Cossio-Diaz

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4476-805X
  4. Aleksandra M Walczak

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  5. Thierry Mora

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  6. Simona Cocco

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1852-7789
  7. Rémi Monasson

    Laboratoire de Physique de l'Ecole Normale Supérieure, École Normale Supérieure - PSL, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-0204

Funding

Agence Nationale de la Recherche (RBMPro CE30-0021-01)

  • Andrea Di Gioacchino
  • Jorge Fernandez-de-Cossio-Diaz

European Research Council (COG 724208)

  • Jorge Fernandez-de-Cossio-Diaz
  • Aleksandra M Walczak

HORIZON EUROPE Marie Sklodowska-Curie Actions (101026293)

  • Andrea Di Gioacchino

Agence Nationale de la Recherche (RBMPro CE30-0021-01)

  • Simona Cocco
  • Rémi Monasson

Agence Nationale de la Recherche (Prodigen)

  • Andrea Di Gioacchino
  • Jorge Fernandez-de-Cossio-Diaz

Agence Nationale de la Recherche (Prodigen)

  • Simona Cocco
  • Rémi Monasson

Agence Nationale de la Recherche (Decrypted CE30-0021-01)

  • Andrea Di Gioacchino
  • Jorge Fernandez-de-Cossio-Diaz

Agence Nationale de la Recherche (Decrypted CE30-0021-01)

  • Simona Cocco
  • Rémi Monasson

Agence Nationale de la Recherche (RESP-REP CE45-0018)

  • Aleksandra M Walczak
  • Thierry Mora

Agence Nationale de la Recherche (RESP-REP CE45-0018)

  • Barbara Bravi

European Research Council (COG 724208)

  • Barbara Bravi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne-Florence Bitbol, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

Version history

  1. Received: November 23, 2022
  2. Preprint posted: December 9, 2022 (view preprint)
  3. Accepted: September 7, 2023
  4. Accepted Manuscript published: September 8, 2023 (version 1)
  5. Version of Record published: September 26, 2023 (version 2)

Copyright

© 2023, Bravi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,482
    views
  • 285
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barbara Bravi
  2. Andrea Di Gioacchino
  3. Jorge Fernandez-de-Cossio-Diaz
  4. Aleksandra M Walczak
  5. Thierry Mora
  6. Simona Cocco
  7. Rémi Monasson
(2023)
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
eLife 12:e85126.
https://doi.org/10.7554/eLife.85126

Share this article

https://doi.org/10.7554/eLife.85126

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.