The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile

  1. Nelson BC Serre
  2. Daša Wernerová
  3. Pruthvi Vittal
  4. Shiv Mani Dubey
  5. Eva Medvecká
  6. Adriana Jelínková
  7. Jan Petrášek
  8. Guido Grossmann
  9. Matyáš Fendrych  Is a corresponding author
  1. Charles University, Czech Republic
  2. Czech Academy of Sciences, Czech Republic
  3. Heinrich-Heine-University Düsseldorf, Germany

Abstract

Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.

Data availability

All the data used for the the manuscript are available at Zenodo.The statistics used and p-values are available as supplementary file.

The following data sets were generated

Article and author information

Author details

  1. Nelson BC Serre

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Daša Wernerová

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Pruthvi Vittal

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Shiv Mani Dubey

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Medvecká

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Adriana Jelínková

    Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan Petrášek

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Guido Grossmann

    Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Matyáš Fendrych

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    For correspondence
    matyas.fendrych@natur.cuni.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9767-8699

Funding

European Research Council (803048)

  • Nelson BC Serre
  • Daša Wernerová
  • Pruthvi Vittal
  • Shiv Mani Dubey
  • Eva Medvecká
  • Matyáš Fendrych

Deutsche Forschungsgemeinschaft (GR4559)

  • Guido Grossmann

Deutsche Forschungsgemeinschaft (CRC1208)

  • Guido Grossmann

EPLAS-EXC-2048/1 (390686111)

  • Guido Grossmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Serre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,036
    views
  • 462
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nelson BC Serre
  2. Daša Wernerová
  3. Pruthvi Vittal
  4. Shiv Mani Dubey
  5. Eva Medvecká
  6. Adriana Jelínková
  7. Jan Petrášek
  8. Guido Grossmann
  9. Matyáš Fendrych
(2023)
The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile
eLife 12:e85193.
https://doi.org/10.7554/eLife.85193

Share this article

https://doi.org/10.7554/eLife.85193

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.

    1. Cell Biology
    2. Plant Biology
    Masanori Izumi, Sakuya Nakamura ... Shinya Hagihara
    Research Article

    Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.