The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile

  1. Nelson BC Serre
  2. Daša Wernerová
  3. Pruthvi Vittal
  4. Shiv Mani Dubey
  5. Eva Medvecká
  6. Adriana Jelínková
  7. Jan Petrášek
  8. Guido Grossmann
  9. Matyáš Fendrych  Is a corresponding author
  1. Charles University, Czech Republic
  2. Czech Academy of Sciences, Czech Republic
  3. Heinrich-Heine-University Düsseldorf, Germany

Abstract

Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.

Data availability

All the data used for the the manuscript are available at Zenodo.The statistics used and p-values are available as supplementary file.

The following data sets were generated

Article and author information

Author details

  1. Nelson BC Serre

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Daša Wernerová

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Pruthvi Vittal

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Shiv Mani Dubey

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Medvecká

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Adriana Jelínková

    Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan Petrášek

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Guido Grossmann

    Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Matyáš Fendrych

    Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
    For correspondence
    matyas.fendrych@natur.cuni.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9767-8699

Funding

European Research Council (803048)

  • Nelson BC Serre
  • Daša Wernerová
  • Pruthvi Vittal
  • Shiv Mani Dubey
  • Eva Medvecká
  • Matyáš Fendrych

Deutsche Forschungsgemeinschaft (GR4559)

  • Guido Grossmann

Deutsche Forschungsgemeinschaft (CRC1208)

  • Guido Grossmann

EPLAS-EXC-2048/1 (390686111)

  • Guido Grossmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Serre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,253
    views
  • 484
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nelson BC Serre
  2. Daša Wernerová
  3. Pruthvi Vittal
  4. Shiv Mani Dubey
  5. Eva Medvecká
  6. Adriana Jelínková
  7. Jan Petrášek
  8. Guido Grossmann
  9. Matyáš Fendrych
(2023)
The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile
eLife 12:e85193.
https://doi.org/10.7554/eLife.85193

Share this article

https://doi.org/10.7554/eLife.85193

Further reading

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.

    1. Plant Biology
    Sonal Gupta, Simon Niels Groen ... Michael D Purugganan
    Research Article

    Populations can adapt to stressful environments through changes in gene expression. However, the fitness effect of gene expression in mediating stress response and adaptation remains largely unexplored. Here, we use an integrative field dataset obtained from 780 plants of Oryza sativa ssp. indica (rice) grown in a field experiment under normal or moderate salt stress conditions to examine selection and evolution of gene expression variation under salinity stress conditions. We find that salinity stress induces increased selective pressure on gene expression. Further, we show that trans-eQTLs rather than cis-eQTLs are primarily associated with rice’s gene expression under salinity stress, potentially via a few master-regulators. Importantly, and contrary to the expectations, we find that cis-trans reinforcement is more common than cis-trans compensation which may be reflective of rice diversification subsequent to domestication. We further identify genetic fixation as the likely mechanism underlying this compensation/reinforcement. Additionally, we show that cis- and trans-eQTLs are under balancing and purifying selection, respectively, giving us insights into the evolutionary dynamics of gene expression variation. By examining genomic, transcriptomic, and phenotypic variation across a rice population, we gain insights into the molecular and genetic landscape underlying adaptive salinity stress responses, which is relevant for other crops and other stresses.