The nutrient-sensing GCN2 signaling pathway is essential for circadian clock function by regulating histone acetylation under amino acid starvation

  1. Xiao-Lan Liu
  2. Yulin Yang
  3. Yue Hu
  4. Jingjing Wu
  5. Chuqiao Han
  6. Qiaojia Lu
  7. Xihui Gan
  8. Shaohua Qi
  9. Jinhu Guo
  10. Qun He
  11. Yi Liu
  12. Xiao Liu  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Yunnan University, China
  3. Sun Yat-sen University, China
  4. China Agricultural University, China
  5. The University of Texas Southwestern Medical Center, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/85241/elife-85241-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-Lan Liu
  2. Yulin Yang
  3. Yue Hu
  4. Jingjing Wu
  5. Chuqiao Han
  6. Qiaojia Lu
  7. Xihui Gan
  8. Shaohua Qi
  9. Jinhu Guo
  10. Qun He
  11. Yi Liu
  12. Xiao Liu
(2023)
The nutrient-sensing GCN2 signaling pathway is essential for circadian clock function by regulating histone acetylation under amino acid starvation
eLife 12:e85241.
https://doi.org/10.7554/eLife.85241