Tau polarizes an aging transcriptional signature to excitatory neurons and glia

Abstract

Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell type-specific manner. Integration of cellular abundance and gene expression pinpoints Nuclear Factor Kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.

Data availability

All original single cell sequencing data have been uploaded to the Accelerating Medicines Parternship (AMP)-AD Knowledge Portal on Synapse and can be accessed through the DOI: https://doi.org/10.7303/syn35798807.1.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Timothy Wu

    Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5296-2023
  2. Jennifer M Deger

    Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Ye

    Department of Neurology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3965-9702
  4. Caiwei Guo

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Justin Dhindsa

    Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandon T Pekarek

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rami Al-Ouran

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhandong Liu

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ismael Al-Ramahi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan Botas

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5476-5955
  11. Joshua M Shulman

    Department of Neurology, Baylor College of Medicine, Houston, United States
    For correspondence
    joshua.shulman@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-1971

Funding

National Institute on Aging (R01AG057339)

  • Zhandong Liu
  • Juan Botas
  • Joshua M Shulman

Huffington Foundation

  • Zhandong Liu
  • Juan Botas
  • Joshua M Shulman

McGee Family Foundation

  • Joshua M Shulman

Duncan Neurological Research Institute

  • Zhandong Liu
  • Ismael Al-Ramahi
  • Juan Botas
  • Joshua M Shulman

Effie Marie Caine Endowed Chair for Alzheimer's Research

  • Joshua M Shulman

National Institute on Aging (R01AG053960)

  • Joshua M Shulman

National Institute on Aging (U01AG061357)

  • Joshua M Shulman

National Institute on Aging (U01AG046161)

  • Joshua M Shulman

Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD103555)

  • Joshua M Shulman

National Institutes of Health (S10OD023469)

  • Joshua M Shulman

National Institutes of Health (S10OD025240)

  • Joshua M Shulman

Cancer Prevention and Research Institute of Texas (RP200504)

  • Joshua M Shulman

Parkinson's Foundation (PF-PRF-830012)

  • Hui Ye

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patrik Verstreken, KU Leuven, Belgium

Version history

  1. Preprint posted: November 16, 2022 (view preprint)
  2. Received: November 29, 2022
  3. Accepted: May 22, 2023
  4. Accepted Manuscript published: May 23, 2023 (version 1)
  5. Version of Record published: June 9, 2023 (version 2)

Copyright

© 2023, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,348
    views
  • 162
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy Wu
  2. Jennifer M Deger
  3. Hui Ye
  4. Caiwei Guo
  5. Justin Dhindsa
  6. Brandon T Pekarek
  7. Rami Al-Ouran
  8. Zhandong Liu
  9. Ismael Al-Ramahi
  10. Juan Botas
  11. Joshua M Shulman
(2023)
Tau polarizes an aging transcriptional signature to excitatory neurons and glia
eLife 12:e85251.
https://doi.org/10.7554/eLife.85251

Share this article

https://doi.org/10.7554/eLife.85251

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.