Tau polarizes an aging transcriptional signature to excitatory neurons and glia

Abstract

Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell type-specific manner. Integration of cellular abundance and gene expression pinpoints Nuclear Factor Kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.

Data availability

All original single cell sequencing data have been uploaded to the Accelerating Medicines Parternship (AMP)-AD Knowledge Portal on Synapse and can be accessed through the DOI: https://doi.org/10.7303/syn35798807.1.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Timothy Wu

    Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5296-2023
  2. Jennifer M Deger

    Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui Ye

    Department of Neurology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3965-9702
  4. Caiwei Guo

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Justin Dhindsa

    Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandon T Pekarek

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rami Al-Ouran

    Department of Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhandong Liu

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ismael Al-Ramahi

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan Botas

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5476-5955
  11. Joshua M Shulman

    Department of Neurology, Baylor College of Medicine, Houston, United States
    For correspondence
    joshua.shulman@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1835-1971

Funding

National Institute on Aging (R01AG057339)

  • Zhandong Liu
  • Juan Botas
  • Joshua M Shulman

Huffington Foundation

  • Zhandong Liu
  • Juan Botas
  • Joshua M Shulman

McGee Family Foundation

  • Joshua M Shulman

Duncan Neurological Research Institute

  • Zhandong Liu
  • Ismael Al-Ramahi
  • Juan Botas
  • Joshua M Shulman

Effie Marie Caine Endowed Chair for Alzheimer's Research

  • Joshua M Shulman

National Institute on Aging (R01AG053960)

  • Joshua M Shulman

National Institute on Aging (U01AG061357)

  • Joshua M Shulman

National Institute on Aging (U01AG046161)

  • Joshua M Shulman

Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD103555)

  • Joshua M Shulman

National Institutes of Health (S10OD023469)

  • Joshua M Shulman

National Institutes of Health (S10OD025240)

  • Joshua M Shulman

Cancer Prevention and Research Institute of Texas (RP200504)

  • Joshua M Shulman

Parkinson's Foundation (PF-PRF-830012)

  • Hui Ye

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,581
    views
  • 178
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy Wu
  2. Jennifer M Deger
  3. Hui Ye
  4. Caiwei Guo
  5. Justin Dhindsa
  6. Brandon T Pekarek
  7. Rami Al-Ouran
  8. Zhandong Liu
  9. Ismael Al-Ramahi
  10. Juan Botas
  11. Joshua M Shulman
(2023)
Tau polarizes an aging transcriptional signature to excitatory neurons and glia
eLife 12:e85251.
https://doi.org/10.7554/eLife.85251

Share this article

https://doi.org/10.7554/eLife.85251

Further reading

    1. Genetics and Genomics
    Silvia Diz-de Almeida, Raquel Cruz ... Ángel Carracedo
    Research Article

    The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.

    1. Genetics and Genomics
    Shaohua Gu, Yuanzhe Shao ... Zhiyuan Li
    Research Article

    Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of Pseudomonas bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.