Enterobacterales plasmid sharing amongst human bloodstream infections, livestock, wastewater, and waterway niches in Oxfordshire, UK

  1. William Matlock  Is a corresponding author
  2. Samuel Lipworth
  3. Kevin K Chau
  4. Manal AbuOun
  5. Leanne Barker
  6. James Kavanagh
  7. Monique Andersson
  8. Sarah Oakley
  9. Marcus Morgan
  10. Derrick W Crook
  11. Daniel S Read
  12. Muna Anjum
  13. Liam P Shaw
  14. Nicole Stoesser  Is a corresponding author
  15. REHAB Consortium
  1. University of Oxford, United Kingdom
  2. Animal and Plant Health Agency, United Kingdom
  3. Oxford University Hospitals NHS Trust, United Kingdom
  4. Centre for Ecology and Hydrology, United Kingdom

Abstract

Plasmids enable the dissemination of antimicrobial resistance (AMR) in common Enterobacterales pathogens, representing a major public health challenge. However, the extent of plasmid sharing and evolution between Enterobacterales causing human infections and other niches remains unclear, including the emergence of resistance plasmids. Dense, unselected sampling is highly relevant to developing our understanding of plasmid epidemiology and designing appropriate interventions to limit the emergence and dissemination of plasmid-associated AMR. We established a geographically and temporally restricted collection of human bloodstream infection (BSI)-associated, livestock-associated (cattle, pig, poultry, and sheep faeces, farm soils) and wastewater treatment work (WwTW)-associated (influent, effluent, waterways upstream/downstream of effluent outlets) Enterobacterales. Isolates were collected between 2008-2020 from sites <60km apart in Oxfordshire, UK. Pangenome analysis of plasmid clusters revealed shared 'backbones', with phylogenies suggesting an intertwined ecology where well-conserved plasmid backbones carry diverse accessory functions, including AMR genes. Many plasmid 'backbones' were seen across species and niches, raising the possibility that plasmid movement between these followed by rapid accessory gene change could be relatively common. Overall, the signature of identical plasmid sharing is likely to be a highly transient one, implying that plasmid movement might be occurring at greater rates than previously estimated, raising a challenge for future genomic One Health studies.

Data availability

Accessions for existing BSI and REHAB reads and assemblies can be found in Lipworth et al., 2021 (BioProject PRJNA604975) and Shaw et al., 2021 (BioProject PRJNA605147) respectively. Analysis scripts can be found in the GitHub repository https://github.com/wtmatlock/oxfordshire-overlap.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. William Matlock

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    For correspondence
    william.matlock@ndm.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5608-0423
  2. Samuel Lipworth

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin K Chau

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Manal AbuOun

    Animal and Plant Health Agency, Addlestone, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Leanne Barker

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. James Kavanagh

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Monique Andersson

    Clinical infection, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah Oakley

    Clinical infection, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marcus Morgan

    Clinical infection, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Derrick W Crook

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0590-2850
  11. Daniel S Read

    Centre for Ecology and Hydrology, Wallingford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Muna Anjum

    Animal and Plant Health Agency, Addlestone, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Liam P Shaw

    Department of Biology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Nicole Stoesser

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    For correspondence
    nicole.stoesser@ndm.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4508-7969
  15. REHAB Consortium

Funding

Medical Research Foundation (MRF-145-0004-TPG-AVISO)

  • William Matlock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Matlock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,731
    views
  • 290
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Matlock
  2. Samuel Lipworth
  3. Kevin K Chau
  4. Manal AbuOun
  5. Leanne Barker
  6. James Kavanagh
  7. Monique Andersson
  8. Sarah Oakley
  9. Marcus Morgan
  10. Derrick W Crook
  11. Daniel S Read
  12. Muna Anjum
  13. Liam P Shaw
  14. Nicole Stoesser
  15. REHAB Consortium
(2023)
Enterobacterales plasmid sharing amongst human bloodstream infections, livestock, wastewater, and waterway niches in Oxfordshire, UK
eLife 12:e85302.
https://doi.org/10.7554/eLife.85302

Share this article

https://doi.org/10.7554/eLife.85302

Further reading

    1. Genetics and Genomics
    Shek Man Chim, Kristen Howell ... Regeneron Genetics Center
    Research Article

    Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.

    1. Genetics and Genomics
    2. Stem Cells and Regenerative Medicine
    Amy Tresenrider, Marcus Hooper ... Thomas A Reh
    Research Article

    Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single-nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.