Abstract

Aurora B, together with IN-box, the C-terminal part of INCENP, forms an enzymatic complex that ensures faithful cell division. The [Aurora B/IN-box] complex is activated by autophosphorylation in the Aurora B activation loop and in IN-box, but it is not clear how these phosphorylations activate the enzyme. We used a combination of experimental and computational studies to investigate the effects of phosphorylation on the molecular dynamics and structure of [Aurora B/IN-box]. In addition, we generated partially phosphorylated intermediates to analyze the contribution of each phosphorylation independently. We found that the dynamics of Aurora and IN-box are interconnected, and IN-box plays both positive and negative regulatory roles depending on the phosphorylation status of the enzyme complex. Phosphorylation in the activation loop of Aurora B occurs intramolecularly and prepares the enzyme complex for activation, but two phosphorylated sites are synergistically responsible for full enzyme activity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The mass spectrometry proteomics data are available through the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD038935.

The following data sets were generated

Article and author information

Author details

  1. Dario Segura-Peña

    Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
    For correspondence
    dario.segura-pena@ncmm.uio.no
    Competing interests
    The authors declare that no competing interests exist.
  2. Oda Hovet

    Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Hemanga Gogoi

    Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennine Dawicki-McKenna

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stine Malene Hansen Wøien

    Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Manuel Carrer

    Department of Chemistry, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Ben E Black

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michele Cascella

    Department of Chemistry, University of Oslo, Oslo, Norway
    For correspondence
    michele.cascella@kjemi.uio.no
    Competing interests
    The authors declare that no competing interests exist.
  9. Nikolina Sekulic

    Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
    For correspondence
    nikolina.sekulic@ncmm.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8027-9114

Funding

Norges Forskningsråd (187615)

  • Dario Segura-Peña
  • Oda Hovet
  • Hemanga Gogoi
  • Stine Malene Hansen Wøien
  • Nikolina Sekulic

Norges Forskningsråd (262695)

  • Oda Hovet
  • Manuel Carrer
  • Michele Cascella

Norwegian Supercomputing Program (NN4654K)

  • Oda Hovet
  • Manuel Carrer
  • Michele Cascella

Norges Forskningsråd (325528)

  • Nikolina Sekulic

National Institute of General Medical Sciences (R35-GM130302)

  • Jennine Dawicki-McKenna
  • Ben E Black

National Institute of General Medical Sciences (GM108360)

  • Jennine Dawicki-McKenna

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Segura-Peña et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,379
    views
  • 349
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dario Segura-Peña
  2. Oda Hovet
  3. Hemanga Gogoi
  4. Jennine Dawicki-McKenna
  5. Stine Malene Hansen Wøien
  6. Manuel Carrer
  7. Ben E Black
  8. Michele Cascella
  9. Nikolina Sekulic
(2023)
The structural basis of the multi-step allosteric activation of Aurora B kinase
eLife 12:e85328.
https://doi.org/10.7554/eLife.85328

Share this article

https://doi.org/10.7554/eLife.85328

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.