Abstract

Adaptive immune responses are triggered by antigenic peptides presented on major histocompatibility complex class I (MHC I) at the surface of pathogen-infected or cancerous cells. Formation of stable peptide-MHC I complexes is facilitated by tapasin and TAPBPR, two related MHC I-specific chaperones that catalyze selective loading of suitable peptides onto MHC I in a process called peptide editing or proofreading. On their journey to the cell surface, MHC I complexes must pass a quality control step performed by UGGT1, which senses the folding status of the transiting N-linked glycoproteins in the endoplasmic reticulum (ER). UGGT1 reglucosylates non-native glycoproteins and thereby allows them to revisit the ER folding machinery. Here, we describe a reconstituted in-vitro system of purified human proteins that enabled us to delineate the function of TAPBPR during the UGGT1-catalyzed quality control and reglucosylation of MHC I. By combining glycoengineering with liquid chromatography-mass spectrometry, we show that TAPBPR promotes reglucosylation of peptide-free MHC I by UGGT1. Thus, UGGT1 cooperates with TAPBPR in fulfilling a crucial function in the quality control mechanisms of antigen processing and presentation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; a Source Data file for Figures 1C and D, Figure 2, Figure 3B-F, Figure 4B,C, E, and F as well as Figure 1-figure supplement 1 and 2, Figure 2-figure supplement 1 and Figure 3-figure supplement 1.

Article and author information

Author details

  1. Lina Sagert

    Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Christian Winter

    Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ina Ruppert

    Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0448-2815
  4. Maximilian Zehetmaier

    Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph Thomas

    Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7441-1089
  6. Robert Tampé

    Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
    For correspondence
    tampe@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0403-2160

Funding

Deutsche Forschungsgemeinschaft (TA 157/12-1)

  • Robert Tampé

Deutsche Forschungsgemeinschaft (CRC 1507/P18)

  • Robert Tampé

European Research Council (798121)

  • Robert Tampé

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pramod K Srivastava, UConn Health, United States

Version history

  1. Received: December 8, 2022
  2. Preprint posted: January 10, 2023 (view preprint)
  3. Accepted: June 21, 2023
  4. Accepted Manuscript published: June 22, 2023 (version 1)
  5. Version of Record published: July 6, 2023 (version 2)

Copyright

© 2023, Sagert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 612
    views
  • 90
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lina Sagert
  2. Christian Winter
  3. Ina Ruppert
  4. Maximilian Zehetmaier
  5. Christoph Thomas
  6. Robert Tampé
(2023)
The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
eLife 12:e85432.
https://doi.org/10.7554/eLife.85432

Share this article

https://doi.org/10.7554/eLife.85432

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.