A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses

  1. Mohamad Ibrahim Cheikh
  2. Joel Tchoufag
  3. Miriam Osterfield
  4. Kevin M Dean
  5. Swayamdipta Bhaduri
  6. Chuzhong Zhang
  7. Kranthi Kiran Mandadapu
  8. Konstantin Doubrovinski  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States
  2. University of California, Berkeley, United States
  3. The University of Texas at Arlington, United States

Abstract

In order to understand morphogenesis, it is necessary to know the material properties or forces shaping the living tissue. In spite of this need, very few in vivo measurements are currently available. Here, using the early Drosophila embryo as a model, we describe a novel cantilever-based technique which allows for the simultaneous quantification of applied force and tissue displacement in a living embryo. By analyzing data from a series of experiments in which embryonic epithelium is subjected to developmentally relevant perturbations, we conclude that the response to applied force is adiabatic and is dominated by elastic forces and geometric constraints, or system size effects. Crucially, computational modeling of the experimental data indicated that the apical surface of the epithelium must be softer than the basal surface, a result which we confirmed experimentally. Further, we used the combination of experimental data and comprehensive computational model to estimate the elastic modulus of the apical surface and set a lower bound on the elastic modulus of the basal surface. More generally, our investigations revealed important general features that we believe should be more widely addressed when quantitatively modeling tissue mechanics in any system. Specifically, different compartments of the same cell can have very different mechanical properties; when they do, they can contribute differently to different mechanical stimuli and cannot be merely averaged together. Additionally, tissue geometry can play a substantial role in mechanical response, and cannot be neglected.

Data availability

All simulation code used in the study is publicly available under https://github.com/doubrovinskilab/cantilever_embryo_rheology

Article and author information

Author details

  1. Mohamad Ibrahim Cheikh

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joel Tchoufag

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Miriam Osterfield

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-852X
  4. Kevin M Dean

    Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0839-2320
  5. Swayamdipta Bhaduri

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chuzhong Zhang

    Department of Material Science and Engineering, The University of Texas at Arlington, Arlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kranthi Kiran Mandadapu

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Konstantin Doubrovinski

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Konstantin.Doubrovinski@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4403-948X

Funding

National Institute of General Medical Sciences (1R01GM134207)

  • Mohamad Ibrahim Cheikh
  • Joel Tchoufag
  • Miriam Osterfield
  • Swayamdipta Bhaduri
  • Konstantin Doubrovinski

National Institute for Child Health and Human Development (1R21HD105189)

  • Mohamad Ibrahim Cheikh
  • Joel Tchoufag
  • Miriam Osterfield
  • Swayamdipta Bhaduri
  • Konstantin Doubrovinski

Robert A. Welch Foundation (I-1950-20180324)

  • Mohamad Ibrahim Cheikh
  • Joel Tchoufag
  • Miriam Osterfield
  • Swayamdipta Bhaduri
  • Konstantin Doubrovinski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Version history

  1. Preprint posted: August 14, 2022 (view preprint)
  2. Received: December 14, 2022
  3. Accepted: September 29, 2023
  4. Accepted Manuscript published: October 2, 2023 (version 1)
  5. Version of Record published: October 18, 2023 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,478
    views
  • 217
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohamad Ibrahim Cheikh
  2. Joel Tchoufag
  3. Miriam Osterfield
  4. Kevin M Dean
  5. Swayamdipta Bhaduri
  6. Chuzhong Zhang
  7. Kranthi Kiran Mandadapu
  8. Konstantin Doubrovinski
(2023)
A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses
eLife 12:e85569.
https://doi.org/10.7554/eLife.85569

Share this article

https://doi.org/10.7554/eLife.85569

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.