A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses

  1. Mohamad Ibrahim Cheikh
  2. Joel Tchoufag
  3. Miriam Osterfield
  4. Kevin M Dean
  5. Swayamdipta Bhaduri
  6. Chuzhong Zhang
  7. Kranthi Kiran Mandadapu
  8. Konstantin Doubrovinski  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States
  2. University of California, Berkeley, United States
  3. The University of Texas at Arlington, United States

Abstract

In order to understand morphogenesis, it is necessary to know the material properties or forces shaping the living tissue. In spite of this need, very few in vivo measurements are currently available. Here, using the early Drosophila embryo as a model, we describe a novel cantilever-based technique which allows for the simultaneous quantification of applied force and tissue displacement in a living embryo. By analyzing data from a series of experiments in which embryonic epithelium is subjected to developmentally relevant perturbations, we conclude that the response to applied force is adiabatic and is dominated by elastic forces and geometric constraints, or system size effects. Crucially, computational modeling of the experimental data indicated that the apical surface of the epithelium must be softer than the basal surface, a result which we confirmed experimentally. Further, we used the combination of experimental data and comprehensive computational model to estimate the elastic modulus of the apical surface and set a lower bound on the elastic modulus of the basal surface. More generally, our investigations revealed important general features that we believe should be more widely addressed when quantitatively modeling tissue mechanics in any system. Specifically, different compartments of the same cell can have very different mechanical properties; when they do, they can contribute differently to different mechanical stimuli and cannot be merely averaged together. Additionally, tissue geometry can play a substantial role in mechanical response, and cannot be neglected.

Data availability

All simulation code used in the study is publicly available under https://github.com/doubrovinskilab/cantilever_embryo_rheology

Article and author information

Author details

  1. Mohamad Ibrahim Cheikh

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joel Tchoufag

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Miriam Osterfield

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-852X
  4. Kevin M Dean

    Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0839-2320
  5. Swayamdipta Bhaduri

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chuzhong Zhang

    Department of Material Science and Engineering, The University of Texas at Arlington, Arlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kranthi Kiran Mandadapu

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Konstantin Doubrovinski

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Konstantin.Doubrovinski@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4403-948X

Funding

National Institute of General Medical Sciences (1R01GM134207)

  • Mohamad Ibrahim Cheikh
  • Joel Tchoufag
  • Miriam Osterfield
  • Swayamdipta Bhaduri
  • Konstantin Doubrovinski

National Institute for Child Health and Human Development (1R21HD105189)

  • Mohamad Ibrahim Cheikh
  • Joel Tchoufag
  • Miriam Osterfield
  • Swayamdipta Bhaduri
  • Konstantin Doubrovinski

Robert A. Welch Foundation (I-1950-20180324)

  • Mohamad Ibrahim Cheikh
  • Joel Tchoufag
  • Miriam Osterfield
  • Swayamdipta Bhaduri
  • Konstantin Doubrovinski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,903
    views
  • 267
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohamad Ibrahim Cheikh
  2. Joel Tchoufag
  3. Miriam Osterfield
  4. Kevin M Dean
  5. Swayamdipta Bhaduri
  6. Chuzhong Zhang
  7. Kranthi Kiran Mandadapu
  8. Konstantin Doubrovinski
(2023)
A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses
eLife 12:e85569.
https://doi.org/10.7554/eLife.85569

Share this article

https://doi.org/10.7554/eLife.85569

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.