A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses

  1. Mohamad Ibrahim Cheikh
  2. Joel Tchoufag
  3. Miriam Osterfield
  4. Kevin M Dean
  5. Swayamdipta Bhaduri
  6. Chuzhong Zhang
  7. Kranthi Kiran Mandadapu
  8. Konstantin Doubrovinski  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States
  2. University of California, Berkeley, United States
  3. The University of Texas at Arlington, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/85569/elife-85569-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohamad Ibrahim Cheikh
  2. Joel Tchoufag
  3. Miriam Osterfield
  4. Kevin M Dean
  5. Swayamdipta Bhaduri
  6. Chuzhong Zhang
  7. Kranthi Kiran Mandadapu
  8. Konstantin Doubrovinski
(2023)
A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses
eLife 12:e85569.
https://doi.org/10.7554/eLife.85569