Abstract

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

Data availability

All crystal structures have been deposited in the RCSB Protein Data Bank (PDB) with accession IDs of: Sa GpsB NTD (PDB ID 8E2B), Sa GpsB NTD + Sa PBP4 C-term (PDB ID 8E2C).

The following data sets were generated

Article and author information

Author details

  1. Michael D Sacco

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren R Hammond

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Radwan E Noor

    Global and Planetary Health, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dipanwita Bhattacharya

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lily J McKnight

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper J Madsen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1411-9080
  7. Xiujun Zhang

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shane G Butler

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. M Trent Kemp

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Aiden C Jaskolka-Brown

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sebastian J Khan

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ioannis Gelis

    Department of Chemistry, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Prahathees Eswara

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    For correspondence
    eswara@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4430-261X
  14. Yu Chen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    For correspondence
    ychen1@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-3600

Funding

National Institutes of Health (R21 AI164775)

  • Yu Chen

National Institutes of Health (R35 GM133617)

  • Prahathees Eswara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Version history

  1. Preprint posted: October 25, 2022 (view preprint)
  2. Received: December 14, 2022
  3. Accepted: April 15, 2024
  4. Accepted Manuscript published: April 19, 2024 (version 1)
  5. Version of Record published: May 1, 2024 (version 2)

Copyright

© 2024, Sacco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 631
    views
  • 126
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Sacco
  2. Lauren R Hammond
  3. Radwan E Noor
  4. Dipanwita Bhattacharya
  5. Lily J McKnight
  6. Jesper J Madsen
  7. Xiujun Zhang
  8. Shane G Butler
  9. M Trent Kemp
  10. Aiden C Jaskolka-Brown
  11. Sebastian J Khan
  12. Ioannis Gelis
  13. Prahathees Eswara
  14. Yu Chen
(2024)
Staphylococcus aureus FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB
eLife 13:e85579.
https://doi.org/10.7554/eLife.85579

Share this article

https://doi.org/10.7554/eLife.85579

Further reading

    1. Microbiology and Infectious Disease
    Xufeng Xie, Xi Chen ... Yongguo Cao
    Research Article

    Leptospirosis is an emerging infectious disease caused by pathogenic Leptospira spp. Humans and some mammals can develop severe forms of leptospirosis accompanied by a dysregulated inflammatory response, which often results in death. The gut microbiota has been increasingly recognized as a vital element in systemic health. However, the precise role of the gut microbiota in severe leptospirosis is still unknown. Here, we aimed to explore the function and potential mechanisms of the gut microbiota in a hamster model of severe leptospirosis. Our study showed that leptospires were able to multiply in the intestine, cause pathological injury, and induce intestinal and systemic inflammatory responses. 16S rRNA gene sequencing analysis revealed that Leptospira infection changed the composition of the gut microbiota of hamsters with an expansion of Proteobacteria. In addition, gut barrier permeability was increased after infection, as reflected by a decrease in the expression of tight junctions. Translocated Proteobacteria were found in the intestinal epithelium of moribund hamsters, as determined by fluorescence in situ hybridization, with elevated lipopolysaccharide (LPS) levels in the serum. Moreover, gut microbiota depletion reduced the survival time, increased the leptospiral load, and promoted the expression of proinflammatory cytokines after Leptospira infection. Intriguingly, fecal filtration and serum from moribund hamsters both increased the transcription of TNF-α, IL-1β, IL-10, and TLR4 in macrophages compared with those from uninfected hamsters. These stimulating activities were inhibited by LPS neutralization using polymyxin B. Based on our findings, we identified an LPS neutralization therapy that significantly improved the survival rates in severe leptospirosis when used in combination with antibiotic therapy or polyclonal antibody therapy. In conclusion, our study not only uncovers the role of the gut microbiota in severe leptospirosis but also provides a therapeutic strategy for severe leptospirosis.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Siena J Glenn, Zealon Gentry-Lear ... Arden Baylink
    Research Article

    Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remain poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized an injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce bacterial attraction to the serum source. This response is orchestrated through chemotaxis and the chemoattractant L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. We find Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provide a competitive advantage for migration into enterohemorrhagic lesions. We define this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients as ‘bacterial vampirism’, which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.