Abstract

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

Data availability

All crystal structures have been deposited in the RCSB Protein Data Bank (PDB) with accession IDs of: Sa GpsB NTD (PDB ID 8E2B), Sa GpsB NTD + Sa PBP4 C-term (PDB ID 8E2C).

The following data sets were generated

Article and author information

Author details

  1. Michael D Sacco

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren R Hammond

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Radwan E Noor

    Global and Planetary Health, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dipanwita Bhattacharya

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lily J McKnight

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper J Madsen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1411-9080
  7. Xiujun Zhang

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shane G Butler

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. M Trent Kemp

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Aiden C Jaskolka-Brown

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sebastian J Khan

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ioannis Gelis

    Department of Chemistry, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Prahathees Eswara

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    For correspondence
    eswara@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4430-261X
  14. Yu Chen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    For correspondence
    ychen1@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-3600

Funding

National Institutes of Health (R21 AI164775)

  • Yu Chen

National Institutes of Health (R35 GM133617)

  • Prahathees Eswara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Version history

  1. Preprint posted: October 25, 2022 (view preprint)
  2. Received: December 14, 2022
  3. Accepted: April 15, 2024
  4. Accepted Manuscript published: April 19, 2024 (version 1)
  5. Version of Record published: May 1, 2024 (version 2)

Copyright

© 2024, Sacco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 580
    views
  • 116
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Sacco
  2. Lauren R Hammond
  3. Radwan E Noor
  4. Dipanwita Bhattacharya
  5. Lily J McKnight
  6. Jesper J Madsen
  7. Xiujun Zhang
  8. Shane G Butler
  9. M Trent Kemp
  10. Aiden C Jaskolka-Brown
  11. Sebastian J Khan
  12. Ioannis Gelis
  13. Prahathees Eswara
  14. Yu Chen
(2024)
Staphylococcus aureus FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB
eLife 13:e85579.
https://doi.org/10.7554/eLife.85579

Share this article

https://doi.org/10.7554/eLife.85579

Further reading

    1. Microbiology and Infectious Disease
    Hina Khan, Partha Paul ... Dibyendu Sarkar
    Research Article

    Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3′,5′-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.