Abstract

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

Data availability

All crystal structures have been deposited in the RCSB Protein Data Bank (PDB) with accession IDs of: Sa GpsB NTD (PDB ID 8E2B), Sa GpsB NTD + Sa PBP4 C-term (PDB ID 8E2C).

The following data sets were generated

Article and author information

Author details

  1. Michael D Sacco

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren R Hammond

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Radwan E Noor

    Global and Planetary Health, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dipanwita Bhattacharya

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lily J McKnight

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesper J Madsen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1411-9080
  7. Xiujun Zhang

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shane G Butler

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. M Trent Kemp

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Aiden C Jaskolka-Brown

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sebastian J Khan

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ioannis Gelis

    Department of Chemistry, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Prahathees Eswara

    Department of Molecular Biosciences, University of South Florida, Tampa, United States
    For correspondence
    eswara@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4430-261X
  14. Yu Chen

    Department of Molecular Medicine, University of South Florida, Tampa, United States
    For correspondence
    ychen1@usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-3600

Funding

National Institutes of Health (R21 AI164775)

  • Yu Chen

National Institutes of Health (R35 GM133617)

  • Prahathees Eswara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Sacco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,040
    views
  • 159
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Sacco
  2. Lauren R Hammond
  3. Radwan E Noor
  4. Dipanwita Bhattacharya
  5. Lily J McKnight
  6. Jesper J Madsen
  7. Xiujun Zhang
  8. Shane G Butler
  9. M Trent Kemp
  10. Aiden C Jaskolka-Brown
  11. Sebastian J Khan
  12. Ioannis Gelis
  13. Prahathees Eswara
  14. Yu Chen
(2024)
Staphylococcus aureus FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB
eLife 13:e85579.
https://doi.org/10.7554/eLife.85579

Share this article

https://doi.org/10.7554/eLife.85579

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.