Core PCP mutations affect short time mechanical properties but not tissue morphogenesis in the Drosophila pupal wing

  1. Romina Piscitello-Gómez
  2. Franz S Gruber
  3. Abhijeet Krishna
  4. Charlie Duclut
  5. Carl D Modes
  6. Marko Popović
  7. Frank Jülicher
  8. Natalie A Dye  Is a corresponding author
  9. Suzanne Eaton
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. University of Dundee, United Kingdom
  3. Laboratoire Physico-Chimie Curie, Institut Curie, France
  4. Center for Systems Biology Dresden, Germany
  5. Max Planck Institute for the Physics of Complex Systems, Germany
  6. Technische Universität Dresden, Germany

Abstract

How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.

Data availability

Source data and code are provided for each figure

Article and author information

Author details

  1. Romina Piscitello-Gómez

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Franz S Gruber

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2008-8460
  3. Abhijeet Krishna

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9291-500X
  4. Charlie Duclut

    Laboratoire Physico-Chimie Curie, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8595-6815
  5. Carl D Modes

    Center for Systems Biology Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marko Popović

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  8. Natalie A Dye

    DFG Excellence Cluster Physics of Life, Technische Universität Dresden, Dresden, Germany
    For correspondence
    natalie_anne.dye@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4859-6670
  9. Suzanne Eaton

    Molecular Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max Planck Society

  • Romina Piscitello-Gómez
  • Franz S Gruber
  • Abhijeet Krishna
  • Charlie Duclut
  • Carl D Modes
  • Marko Popović
  • Frank Jülicher
  • Natalie A Dye
  • Suzanne Eaton

Deutsche Forschungsgemeinschaft (EXC-2068-390729961)

  • Romina Piscitello-Gómez
  • Abhijeet Krishna
  • Carl D Modes
  • Frank Jülicher
  • Natalie A Dye
  • Suzanne Eaton

Deutsche Forschungsgemeinschaft (SPP1782)

  • Romina Piscitello-Gómez
  • Franz S Gruber
  • Natalie A Dye
  • Suzanne Eaton

Deutsche Krebshilfe (MSNZ-P2 Dresden)

  • Natalie A Dye

Austrian Academy of Sciences (DOC Fellowship)

  • Franz S Gruber

Agence Nationale de la Recherche (ANR-11-LABX-0071)

  • Charlie Duclut

Agence Nationale de la Recherche (ANR-18-IDEX-0001)

  • Charlie Duclut

Deutsche Forschungsgemeinschaft (EA4/10-1,EA4/10-2)

  • Romina Piscitello-Gómez
  • Franz S Gruber
  • Natalie A Dye
  • Suzanne Eaton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Piscitello-Gómez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 814
    views
  • 172
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romina Piscitello-Gómez
  2. Franz S Gruber
  3. Abhijeet Krishna
  4. Charlie Duclut
  5. Carl D Modes
  6. Marko Popović
  7. Frank Jülicher
  8. Natalie A Dye
  9. Suzanne Eaton
(2023)
Core PCP mutations affect short time mechanical properties but not tissue morphogenesis in the Drosophila pupal wing
eLife 12:e85581.
https://doi.org/10.7554/eLife.85581

Share this article

https://doi.org/10.7554/eLife.85581

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.