Biallelic variants in MAD2L1BP (p31comet) cause female infertility characterized by oocyte maturation arrest
Abstract
Human oocyte maturation arrest represents one of the severe conditions for female patients with primary infertility. However, the genetic factors underlying this human disease remain largely unknown. The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that ensures accurate segregation of chromosomes throughout cell cycles. Once the kinetochores of chromosomes are correctly attached to bipolar spindles and the SAC is satisfied, the MAD2L1BP, best known as p31comet, binds MAD2 and recruits the AAA+-ATPase TRIP13 to disassemble the mitotic checkpoint complex (MCC), leading to the cell cycle progression. In this study, by whole-exome sequencing (WES), we identified homozygous and compound heterozygous MAD2L1BP variants in three families with female patients diagnosed with primary infertility owing to oocyte metaphase I (MI) arrest. Functional studies revealed that the protein variants resulting from the C-terminal truncation of MAD2L1BP lost their binding ability to MAD2. cRNA microinjection of full-length or truncated MAD2L1BP uncovered their discordant roles in driving the extrusion of polar body 1 (PB1) in mouse oocytes. Furthermore, the patient’s oocytes carrying the mutated MAD2L1BP variants resumed polar body extrusion (PBE) when rescued by microinjection of full-length MAD2L1BP cRNAs. Together, our studies identified and characterized novel biallelic variants in MAD2L1BP responsible for human oocyte maturation arrest at MI, and thus prompted new therapeutic avenues for curing female primary infertility.
Data availability
Source Data files have been provided for Figure 2, Figure 3 and Table 2. Sequencing data have been deposited in GEO under accession code GSE232488.
-
Biallelic variants in MAD2L1BP (p31comet) cause female infertility characterized by oocyte maturation arrestNCBI Gene Expression Omnibus, GSE232488.
Article and author information
Author details
Funding
National Natural Science Foundation of China (81801440)
- Lingli Huang
National Natural Science Foundation of China (82192874)
- Han Zhao
National Natural Science Foundation of China (82171842)
- Han Zhao
National Natural Science Foundation of China (31970793)
- Jianqiang Bao
National Natural Science Foundation of China (32170856)
- Jianqiang Bao
the Ministry of Science and Technology of China (2019YFA0802600)
- Jianqiang Bao
the Fundamental Research Funds for the Central Universities (WK2070000156)
- Jianqiang Bao
Startup funding (KY9100000001)
- Jianqiang Bao
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal care and experimental procedures were conducted in accordance with the Animal Research Committee guidelines of Zhejiang University (approval # ZJU20210252 to H.Y.F) and USTC (approval # 2019-N(A)-299 to J.Q.B).
Human subjects: Peripheral blood samples from all affected individuals and their available family members and ten Metaphase I (MI) arrested oocytes from the patient (F1: II-1) were donated for this study with written informed consent. This study was approved by the biomedical research ethics committees of Anhui Medical University on 1 March 2017(reference number 20170121; the Anhui Provincial Hospital Affiliated to Anhui Medical University, now renamed as the First Affiliated Hospital of USTC after December 2017).
Copyright
© 2023, Huang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 961
- views
-
- 136
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
A new single-cell atlas of gene expression provides insights into the patterning of the neural plate of mice.
-
- Developmental Biology
The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.