Environment as a limiting factor of the historical global spread of mungbean

  1. Pei-Wen Ong
  2. Ya-Ping Lin
  3. Hung-Wei Chen
  4. Cheng-Yu Lo
  5. Marina Burlyaeva
  6. Thomas Noble
  7. Ramakrishnan Madhavan Nair
  8. Roland Schafleitner
  9. Margarita Vishnyakova
  10. Eric Bishop-von-Wettberg
  11. Maria G Samsonova
  12. Sergey Nuzhdin
  13. Chau-Ti Ting
  14. Cheng-Ruei Lee  Is a corresponding author
  1. National Taiwan University, Taiwan
  2. AVRDC - The World Vegetable Center, Taiwan
  3. N.I. Vavilov Research Institute of Plant Industry, Russian Federation
  4. Queensland University of Technology, Australia
  5. AVRDC - The World Vegetable Center, India
  6. University of Vermont, United States
  7. Peter the Great St. Petersburg Polytechnic University, Russian Federation
  8. University of Southern California, United States

Abstract

While the domestication process has been investigated in many crops, the detailed route of cultivation range expansion and factors governing this process received relatively little attention. Here using mungbean (Vigna radiata var. radiata) as a test case, we investigated the genomes of more than one thousand accessions to illustrate climatic adaptation’s role in dictating the unique routes of cultivation range expansion. Despite the geographical proximity between South and Central Asia, genetic evidence suggests mungbean cultivation first spread from South Asia to Southeast, East, and finally reached Central Asia. Combining evidence from demographic inference, climatic niche modeling, plant morphology, and records from ancient Chinese sources, we showed that the specific route was shaped by the unique combinations of climatic constraints and farmer practices across Asia, which imposed divergent selection favoring higher yield in the south but short-season and more drought-tolerant accessions in the north. Our results suggest that mungbean did not radiate from the domestication center as expected purely under human activity, but instead the spread of mungbean cultivation is highly constrained by climatic adaptation, echoing the idea that human commensals are more difficult to spread through the south-north axis of continents.

Data availability

Sequences generated in this study are available under NCBI BioProject PRJNA809503. Accession names, GPS coordinates, and NCBI accession numbers of the Vavilov Institute accessions are available under Supplementary file 1. Plant trait data are available at Dryad https://doi.org/10.5061/dryad.d7wm37q3h. Sequences and accession information of the World Vegetable Centre mini-core and the Australian Diversity Panel collections were obtained from the NCBI BioProject PRJNA645721(Breria et al., 2020) and PRJNA963182 (Noble et al., 2018).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Pei-Wen Ong

    Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  2. Ya-Ping Lin

    AVRDC - The World Vegetable Center, Tainan, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hung-Wei Chen

    Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Cheng-Yu Lo

    Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  5. Marina Burlyaeva

    N.I. Vavilov Research Institute of Plant Industry, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3708-2594
  6. Thomas Noble

    Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7731-5559
  7. Ramakrishnan Madhavan Nair

    AVRDC - The World Vegetable Center, Patancheru, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2787-8396
  8. Roland Schafleitner

    AVRDC - The World Vegetable Center, Tainan, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  9. Margarita Vishnyakova

    N.I. Vavilov Research Institute of Plant Industry, St.Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  10. Eric Bishop-von-Wettberg

    Department of Plant and Soil Science, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2724-0317
  11. Maria G Samsonova

    Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, St.Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  12. Sergey Nuzhdin

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Chau-Ti Ting

    Department of Life Science, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  14. Cheng-Ruei Lee

    Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
    For correspondence
    chengrueilee@ntu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1913-9964

Funding

Ministry of Science and Technology, Taiwan (107-2923-B-002-004-MY3)

  • Chau-Ti Ting
  • Cheng-Ruei Lee

Ministry of Science and Technology, Taiwan (110-2628-B-002-027)

  • Cheng-Ruei Lee

Australian Centre for International Agricultural Research (CROP-2019-144)

  • Ramakrishnan Madhavan Nair
  • Roland Schafleitner

Ministry of Science and Technology, Taiwan (110-2313-B-125-001-MY3)

  • Ya-Ping Lin

Australian Centre for International Agricultural Research (CIM-2014-079)

  • Ramakrishnan Madhavan Nair
  • Roland Schafleitner

U.S. Department of Agriculture (Multistate Hatch NE1710)

  • Eric Bishop-von-Wettberg

Russian Science Foundation (18-46-08001)

  • Eric Bishop-von-Wettberg
  • Maria G Samsonova

Ministry of Science and Higher Education of the Russian Federation (075-15-2020-934)

  • Eric Bishop-von-Wettberg
  • Maria G Samsonova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Biology Tübingen, Germany

Version history

  1. Preprint posted: April 28, 2022 (view preprint)
  2. Received: December 21, 2022
  3. Accepted: May 18, 2023
  4. Accepted Manuscript published: May 19, 2023 (version 1)
  5. Version of Record published: June 27, 2023 (version 2)

Copyright

© 2023, Ong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,760
    views
  • 287
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pei-Wen Ong
  2. Ya-Ping Lin
  3. Hung-Wei Chen
  4. Cheng-Yu Lo
  5. Marina Burlyaeva
  6. Thomas Noble
  7. Ramakrishnan Madhavan Nair
  8. Roland Schafleitner
  9. Margarita Vishnyakova
  10. Eric Bishop-von-Wettberg
  11. Maria G Samsonova
  12. Sergey Nuzhdin
  13. Chau-Ti Ting
  14. Cheng-Ruei Lee
(2023)
Environment as a limiting factor of the historical global spread of mungbean
eLife 12:e85725.
https://doi.org/10.7554/eLife.85725

Share this article

https://doi.org/10.7554/eLife.85725

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.