MTL neurons phase-lock to human hippocampal theta

  1. Daniel R Schonhaut  Is a corresponding author
  2. Aditya M Rao
  3. Ashwin G Ramayya
  4. Ethan A Solomon
  5. Nora A Herweg
  6. Itzhak Fried
  7. Michael J Kahana  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Los Angeles, United States

Abstract

Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1,854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2-4Hz) or fast (6-10Hz) theta bands, with a significant subset exhibiting nested slow theta x beta frequency (13-20Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.

Data availability

The data used in this study is publicly available for download from the Cognitive Electrophysiology Data Portal: http://memory.psych.upenn.edu/Electrophysiological_Data. This dataset includes de-identified, raw EEG data, spike-sorted unit data, and preprocessed phase-locking data. All data analysis code and JupyterLab notebooks can be freely downloaded at the public GitHub repositories: https://github.com/pennmem/SchoEtal24_eLife.

Article and author information

Author details

  1. Daniel R Schonhaut

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    daniel.schonhaut@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8667-031X
  2. Aditya M Rao

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashwin G Ramayya

    Department of Neurosurgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4444-0433
  4. Ethan A Solomon

    Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nora A Herweg

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4647-7408
  6. Itzhak Fried

    Department of Neurosurgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5962-2678
  7. Michael J Kahana

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    kahana@psych.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8122-9525

Funding

National Science Foundation Graduate Research Fellowship Program

  • Daniel R Schonhaut

National Institutes of Health (1U01NS113198-01)

  • Michael J Kahana

National Institute of Neurological Disorders and Stroke (R01-NS033221)

  • Itzhak Fried

National Institute of Neurological Disorders and Stroke (R01-NS084017)

  • Itzhak Fried

Deutsche Forschungsgemeinschaft (HE 8302/1-1)

  • Nora A Herweg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Caleb Kemere, Rice University, United States

Ethics

Human subjects: All testing was completed under informed consent. Institutional review boards at the University of California, Los Angeles and the University of Pennsylvania approved all experiments. The number of the UCLA IRB protocol on which the Goldmine experiment was conducted is #10-000973.

Version history

  1. Preprint posted: December 20, 2022 (view preprint)
  2. Received: December 22, 2022
  3. Accepted: January 8, 2024
  4. Accepted Manuscript published: January 9, 2024 (version 1)
  5. Version of Record published: March 18, 2024 (version 2)

Copyright

© 2024, Schonhaut et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 721
    views
  • 161
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel R Schonhaut
  2. Aditya M Rao
  3. Ashwin G Ramayya
  4. Ethan A Solomon
  5. Nora A Herweg
  6. Itzhak Fried
  7. Michael J Kahana
(2024)
MTL neurons phase-lock to human hippocampal theta
eLife 13:e85753.
https://doi.org/10.7554/eLife.85753

Share this article

https://doi.org/10.7554/eLife.85753

Further reading

    1. Neuroscience
    Zahid Padamsey, Danai Katsanevaki ... Nathalie L Rochefort
    Research Article

    Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.