MTL neurons phase-lock to human hippocampal theta

  1. Daniel R Schonhaut  Is a corresponding author
  2. Aditya M Rao
  3. Ashwin G Ramayya
  4. Ethan A Solomon
  5. Nora A Herweg
  6. Itzhak Fried
  7. Michael J Kahana  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Los Angeles, United States

Abstract

Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1,854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2-4Hz) or fast (6-10Hz) theta bands, with a significant subset exhibiting nested slow theta x beta frequency (13-20Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.

Data availability

The data used in this study is publicly available for download from the Cognitive Electrophysiology Data Portal: http://memory.psych.upenn.edu/Electrophysiological_Data. This dataset includes de-identified, raw EEG data, spike-sorted unit data, and preprocessed phase-locking data. All data analysis code and JupyterLab notebooks can be freely downloaded at the public GitHub repositories: https://github.com/pennmem/SchoEtal24_eLife.

Article and author information

Author details

  1. Daniel R Schonhaut

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    daniel.schonhaut@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8667-031X
  2. Aditya M Rao

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashwin G Ramayya

    Department of Neurosurgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4444-0433
  4. Ethan A Solomon

    Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nora A Herweg

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4647-7408
  6. Itzhak Fried

    Department of Neurosurgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5962-2678
  7. Michael J Kahana

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    kahana@psych.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8122-9525

Funding

National Science Foundation Graduate Research Fellowship Program

  • Daniel R Schonhaut

National Institutes of Health (1U01NS113198-01)

  • Michael J Kahana

National Institute of Neurological Disorders and Stroke (R01-NS033221)

  • Itzhak Fried

National Institute of Neurological Disorders and Stroke (R01-NS084017)

  • Itzhak Fried

Deutsche Forschungsgemeinschaft (HE 8302/1-1)

  • Nora A Herweg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All testing was completed under informed consent. Institutional review boards at the University of California, Los Angeles and the University of Pennsylvania approved all experiments. The number of the UCLA IRB protocol on which the Goldmine experiment was conducted is #10-000973.

Copyright

© 2024, Schonhaut et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,128
    views
  • 223
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel R Schonhaut
  2. Aditya M Rao
  3. Ashwin G Ramayya
  4. Ethan A Solomon
  5. Nora A Herweg
  6. Itzhak Fried
  7. Michael J Kahana
(2024)
MTL neurons phase-lock to human hippocampal theta
eLife 13:e85753.
https://doi.org/10.7554/eLife.85753

Share this article

https://doi.org/10.7554/eLife.85753

Further reading

    1. Neuroscience
    Tanja Fuchsberger, Imogen Stockwell ... Ole Paulsen
    Research Advance

    The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here, we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP), which is mediated via the Ca2+-sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis. Furthermore, dopamine induced a protein-synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.