Abstract

Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain, elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Deutsch et al., 2020) partner repository with dataset identifiers: PXD038974 and PXD017501.RNAseq data were deposited in GEO with accession GSE201889

The following data sets were generated

Article and author information

Author details

  1. Meghan E Wynne

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Oluwaseun Ogunbona

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alicia R Lane

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6404-7559
  4. Avanti Gokhale

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephanie A Zlatic

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chongchong Xu

    Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhexing Wen

    Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Duc M Duong

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sruti Rayaprolu

    Department of Neurology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anna Ivanova

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6221-6240
  11. Eric A Ortlund

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Eric B Dammer

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Nicholas T Seyfried

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Blaine R Roberts

    Department of Biochemistry, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Amanda Crocker

    Program in Neuroscience, Middlebury College, Middlebury, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Vinit Shanbhag

    Department of Biochemistry, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Michael Petris

    Department of Biochemistry, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Nanami Senoo

    Department of Physiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Selvaraju Kandasamy

    Department of Physiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Steven Michael Claypool

    Department of Physiology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5316-1623
  21. Antoni Barrientos

    Department of Neurology, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9018-3231
  22. Aliza Wingo

    Department of Neurology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Thomas S Wingo

    Department of Neurology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7679-6282
  24. Srikant Rangaraju

    Department of Neurology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Allan I Levey

    Department of Neurology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3153-502X
  26. Erica Werner

    Department of Cell Biology, Emory University, Atlanta, United States
    For correspondence
    ewerner@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8183-1601
  27. Victor Faundez

    Department of Cell Biology, Emory University, Atlanta, United States
    For correspondence
    vfaunde@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-5271

Funding

National Institute on Aging (1RF1AG060285)

  • Victor Faundez

ARCS Foundation Award

  • Alicia R Lane

Alzheimer's Disease Research Center, Emory University (P30AG066511)

  • Victor Faundez

National Institute on Aging (U01AG061357)

  • Nicholas T Seyfried

National Institute of Neurological Disorders and Stroke (F31AG067623)

  • Meghan E Wynne

National Institute of Neurological Disorders and Stroke (5T32NS007480)

  • Meghan E Wynne

National Institute of Neurological Disorders and Stroke (R01NS11430)

  • Srikant Rangaraju

National Institute on Aging (RF1AG071587)

  • Srikant Rangaraju

National Institute on Aging (F32AG064862)

  • Sruti Rayaprolu

National Institute of Neurological Disorders and Stroke (1F31NS127419)

  • Alicia R Lane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Wynne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,218
    views
  • 672
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meghan E Wynne
  2. Oluwaseun Ogunbona
  3. Alicia R Lane
  4. Avanti Gokhale
  5. Stephanie A Zlatic
  6. Chongchong Xu
  7. Zhexing Wen
  8. Duc M Duong
  9. Sruti Rayaprolu
  10. Anna Ivanova
  11. Eric A Ortlund
  12. Eric B Dammer
  13. Nicholas T Seyfried
  14. Blaine R Roberts
  15. Amanda Crocker
  16. Vinit Shanbhag
  17. Michael Petris
  18. Nanami Senoo
  19. Selvaraju Kandasamy
  20. Steven Michael Claypool
  21. Antoni Barrientos
  22. Aliza Wingo
  23. Thomas S Wingo
  24. Srikant Rangaraju
  25. Allan I Levey
  26. Erica Werner
  27. Victor Faundez
(2023)
APOE expression and secretion are modulated by mitochondrial dysfunction
eLife 12:e85779.
https://doi.org/10.7554/eLife.85779

Share this article

https://doi.org/10.7554/eLife.85779

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.