Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons

  1. Maria I Lazaro-Pena
  2. Adam B Cornwell
  3. Carlos A Diaz-Balzac
  4. Ritika Das
  5. Zachary C Ward
  6. Nicholas Macoretta
  7. Juilee Thakar
  8. Andrew V Samuelson  Is a corresponding author
  1. University of Rochester Medical Center, United States
  2. University of Rochester, United States

Abstract

Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans homeodomain-interacting protein kinase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.

Data availability

Our primary sequence data is available for review (GEO accession GSE220744: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE220744). THE TOKEN FOR REVIEWER ACCESS IS:mzaxakemftsplqvData analysis scripts have been deposited at: https://github.com/samuelsonlab-urmc/hpk1_manuscript_2023All data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for all Figures and Figure supplements in 14 Supplementary Files.

The following data sets were generated

Article and author information

Author details

  1. Maria I Lazaro-Pena

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3061-8835
  2. Adam B Cornwell

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0572-3107
  3. Carlos A Diaz-Balzac

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4723-1282
  4. Ritika Das

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zachary C Ward

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicholas Macoretta

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Juilee Thakar

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew V Samuelson

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    For correspondence
    Andrew_Samuelson@URMC.Rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3071-5766

Funding

National Institutes of Health (RF1AG062593)

  • Maria I Lazaro-Pena
  • Adam B Cornwell
  • Ritika Das
  • Zachary C Ward
  • Nicholas Macoretta
  • Andrew V Samuelson

National Institutes of Health (F32HD105323)

  • Carlos A Diaz-Balzac

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Lazaro-Pena et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,128
    views
  • 162
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria I Lazaro-Pena
  2. Adam B Cornwell
  3. Carlos A Diaz-Balzac
  4. Ritika Das
  5. Zachary C Ward
  6. Nicholas Macoretta
  7. Juilee Thakar
  8. Andrew V Samuelson
(2023)
Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons
eLife 12:e85792.
https://doi.org/10.7554/eLife.85792

Share this article

https://doi.org/10.7554/eLife.85792

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.